✔ 最佳答案
1.
Let y = x + (2/x) .Express x² + (4/x²) in terms of y
Solution :
x + (2/x) = y
[x + (2/x)]² = y²
x² + 2x(2/x) + (2/x)² = y²
x² + 4 + (4/x²) = y²
x² + (4/x²) = y² - 4
2.
Solve equation x² + 3x + 4 + (6/x) + (4/x²) = 0,and express youranswers in form a + bi
x² + 3x + 4 + (6/x) + (4/x²) = 0
x² + (4/x²) + 3x + (6/x) + 4 = 0
[x² + (4/x²)] + 3[x + (2/x)] + 4 = 0
From Q.1, when x + (2/x) = y, then x² + (4/x²) = y².
(y² - 4) + 3y + 4 = 0
y² + 3y = 0
y(y + 3) = 0
y = 0 or y = -3
x + (2/x) = 0 or x + (2/x) = -3
(x² + 2)/x = 0 or (x² + 2)/x = -3
x² + 2 = 0 or x² + 2 = -3x
x² = -2 or x² + 3x + 2 = 0
x² = -2 or (x + 1)(x + 2) = 0
x = (√2)i or x = -(√2)i or x = -1 or x = -2
x = 0 + (√2)i or x = 0 - (√2)i or x = -1 + 0i or x = -2 + 0i