✔ 最佳答案
Let (x + yi)^2 = 10i
(x^2 - y^2) + 2xyi = 10i
So, x^2 - y^2 = 0 and 2xy = 10
x = y or x = -y
When x = y, 2y^2 = 10 => y = √5 or -√5
When x = -y, -2y^2 = 10 => y^2 = -5 => y = √5i or -√5i
So, the square roots are √5 + √5i, √5 - √5i, -√5 + √5i, √5 + √5i
2011-09-17 18:31:40 補充:
So, the square roots are √5 + √5i, -√5 - √5i, -√5 - √5i, -√5 + √5i
2011-09-17 18:39:24 補充:
From line 5
When x = y, 2y^2 = 10 => y = √5 or -√5
When x = -y, -2y^2 = 10 => y^2 = -5 (rejected as y is real)
So, the square roots are √5 + √5i, -√5 - √5i