maths variation

2011-09-11 9:34 am
prove that x∝y is equal to x^2-2xy+y^2∝x^2+2xy+y^2

回答 (1)

2011-09-11 11:12 am
✔ 最佳答案
x ∝ y
Hence x = ky
where k is a constant.

(x² - 2xy + y²) / (x² + 2xy + y²)
= [(ky)² - 2(ky)y + y²] / [(ky)² +2(ky)(y) + y²]
= (k²y² - 2ky² + y²) / (k²y² + 2ky² + y²)
= (k² - 2k + 1)y² / (k² +2k + 1)y²
= (k² - 2k + 1) / (k² +2k + 1)
= constant

Hence, x² - 2xy + y² = constant * (x² + 2xy + y²)
i.e. x² - 2xy + y² ∝ x² + 2xy + y²
參考: wanszeto


收錄日期: 2021-04-20 11:27:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110911000051KK00087

檢視 Wayback Machine 備份