數學知識交流---解二元方程(1)

2011-09-02 12:04 am
(1)

解方程組

x + y = 10
x - y = 19

(2)

解方程組

2x - 3y = 6
7x - 15y = 3

(3)

解方程組

xy - 3x = 3
y^2 - x = 15

(4)

解方程組

x^2 + y^2 = 25
x + y = 1

請詳細說明答案。

回答 (2)

2011-09-02 12:23 am
✔ 最佳答案
(1) 解方程組
x + y = 10 ------(1)
x - y = 19 -------(2)
解:
(1) + (2),得:
2x = 29
x = 14.5
(1) - (2),得:
2y = -9
y = -4.5
所以
x = 14.5, y = -4.5

(2) 解方程組
2x - 3y = 6 -------(1)
7x - 15y = 3 ------(2)
解:
(1)×5 - (2),得:
3x = 27
x = 9
把x = 9代入(1),得:
2×9 - 3y = 6
3y = 12
y = 4
所以
x = 9, y = 4

(3) 解方程組
xy - 3x = 3 --------(1)
y² - x = 13 ---------(2)
由(2),得:
x = y² - 13 ---------(3)
把(3)代入(1),得:
(y² - 13) y = 3(y² - 13) + 3
y³ - 13y = 3y² - 36
y³ - 3y² - 13y + 36 = 0
y³ - 4y² + y² - 4y - 9y + 36 = 0
y² (y - 4) + y (y - 4) - 9 (y - 4) = 0
(y - 4)(y² + y - 9) = 0
y = 4 或 y² + y - 9 = 0
y² + y - 9 = 0
y = (-1 - √37) / 2 或 y = (-1 + √37) / 2
所以原方程的解為:
y1 = 4, y2 = (-1 - √37) / 2, y3 = (-1 + √37) / 2.

(4) 解方程組
x² + y² = 25 ----------(1)
x + y = 1 --------------(2)
解:(2)²,得:
x² + 2xy + y² = 1 ---(3)
(3) - (1),得:
2xy = -24
xy = -12 --------------(4)
由(2),得:
x = 1 - y --------------(5)
把(5)代入(4),得:
(1 - y) y = -12
y² - y - 12 = 0
(y - 4)(y + 3) = 0
所以
y1 = 4, y2 = -3


2011-09-01 16:27:08 補充:
3.
當y1 = 4時,x1 = 4² - 13 = 3
當y2 = (-1 - √37) / 2時,x2 = [ (-1 - √37) / 2 ]² - 13 = (√37 - 7) / 2
當y3 = (-1 + √37) / 2時,x3 = [ (-1 + √37) / 2 ]² - 13 = (-√37 - 7) / 2.

4.
當y1 = 4時,x1 = 1 - 4 = -3
當y2 = -3時,x2 = 1 - (-3) = 4.
2011-09-02 5:28 am
x^2 + y^2 = 25
x + y = 1
____________
From2:
x=1-y-------3
Sub 3 into 1:
1-2y+y^2+y^2=25
2y^2-2y-24=0
y^2-y-12=0
y^2 - y - 12 = 0
(y - 4)(y + 3) = 0
y=4,y=-3
__________


收錄日期: 2021-04-13 18:12:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110901000051KK00492

檢視 Wayback Machine 備份