設 f(x) 為可導函數。已知 f(8) = 6 及 f'(

2011-08-28 9:26 am
設 f(x) 為一可導函數。已知 f(8) = 6 及 f'(8) = -2。

(a) 設 u(x) = x^3。求 du/dx。
(b) 求當 x = 8 時 d/dx[f(x)]^3 的值。
(c) 若 g(x) = f(x^3) 及 h(x) = [f(x^3)]^3,利用 (a) 及 (b) 的結果,求
(i) g'(2),
(ii) h'(2)

回答 (1)

2011-08-28 5:33 pm
✔ 最佳答案
設 f(x) 為一可導函數。已知 f(8)=6及 f'(8)=-2
(a) 設 u(x) = x^3。求 du/dx
du/dx=dx^3/dx=3x^2
(b) 求當 x= 8 時 d/dx[f(x)]^3 的值。
d[f(x)]^3/dx
={d[f(x)]^3/df(x)}*df(x)/dx
=3[f(x)]^2*f'(x)
d[f(x)]^3/dx|x=8
=3*6^2*(-2)
=-216
(c) 若 g(x) = f(x^3) 及 h(x) =[f(x^3)]^3,利用 (a)及(b)的結果,求
(i) g'(2)
dg(x)/dx
=df(x^3)/dx
=[df(x^3)/dx^3]*dx^3/dx
=3x^2f'(x^3)
g'(2)=3*4*(-2)=-24
(ii) h'(2)
dh(x)/dx
=d[f(x^3)]^3/dx
={d[f(x^3)]^3/df(x^3)}*{df(x^3)/dx^3}*(dx^3/dx)
={3[f(x^3)]^2}*f'(x^3)*(3x^2)
h'(2)=3*36*(-2)*12=-2592




收錄日期: 2021-05-01 13:47:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110828000051KK00081

檢視 Wayback Machine 備份