✔ 最佳答案
LHS=[2sin²(90-x)-1]/[sin(90-x)+sinx]
=[2cos²x-(sin²x+cos²x)]/(cosx+sinx)
=(cos²x-sin²x)/(cosx+sinx)
=[(cosx+sinx)(cosx-sinx)]/(cosx+sinx)
=cosx-sinx
=RHS
2011-08-22 21:16:02 補充:
can u type it again more clearly?
2011-08-22 21:17:33 補充:
?? '20tan²' ??
2011-08-23 21:37:19 補充:
??20tan^2???
do u mean 20tan²x??
2011-08-24 13:12:28 補充:
(a).
[2sin²(90-x)-1]/[sin(90-x)+sinx]
=(2cos²x-1)/(cosx+sinx)
=[cos²x+(cos²x-1)]/(cosx+sinx)
=(cos²x-sin²x)/(cosx+sinx)
=[(cosx+sinx)(cosx-sinx)]/(cosx+sinx)
=cosx-sinx
So,
cosx-sinx=20sinxtanx
cosx=20sinxtanx+sinx
1=20tan²x+tanx
20tan²x+tanx-1=0
2011-08-24 13:15:47 補充:
(b).
[2sin²(90-x)-1]/[sin(90-x)+sinx]=20sinxtanx
From(a),
20tan²x+tanx-1=0
By quadratic formula,
tanx=0.2 or -0.25
So,
x=11.3,191 or 166,346(3 sig.fig.)
參考: Hope I can help you! ^_^ (From me)