✔ 最佳答案
Find the equation of tangents drawn fromthe origin to the curve y=4x^2-x+1
Sol
方法1
y=4x^2-x+1
y’=8x-1
8x-1=y/x
8x^2-x=y=4x^2-x+1
4x^2=1
x=+/-(1/2)
(1) x=1/2
y’=8*(1/2)-1=3
切線方程式:3x-y=0
(2) x=-1/2
y’=8*(-1/2)-1=-5
切線方程式:5x+y=0
方法2
設切點(m,n)
切線方程式:nx-my=0
nx=my
y=4x^2-x+1
my=4mx^2-mx+m
nx=4mx^2-mx+m
4mx^2-(m+n)x+m=0
D=(m+n)^2-16m^2=0
m^2+2mn+n^2-16m^2=0
n^2+2mn-15m^2=0
(n-3m)(n+5m)=0
n=3m or n=-5m
(1) n=3m
切線方程式:nx-my=0
3mx-my=0
3x-y=0
(2) n=-5m
切線方程式:nx-my=0
-5mx-my=0
5x+y=0