M2 Derivatives

2011-08-18 9:01 am
Find the equation of tangents drawn from the origin to the curve y=4x^2-x+1

回答 (2)

2011-08-18 9:43 am
✔ 最佳答案
Find the equation of tangents drawn fromthe origin to the curve y=4x^2-x+1
Sol
方法1
y=4x^2-x+1
y’=8x-1
8x-1=y/x
8x^2-x=y=4x^2-x+1
4x^2=1
x=+/-(1/2)
(1) x=1/2
y’=8*(1/2)-1=3
切線方程式:3x-y=0
(2) x=-1/2
y’=8*(-1/2)-1=-5
切線方程式:5x+y=0
方法2
設切點(m,n)
切線方程式:nx-my=0
nx=my
y=4x^2-x+1
my=4mx^2-mx+m
nx=4mx^2-mx+m
4mx^2-(m+n)x+m=0
D=(m+n)^2-16m^2=0
m^2+2mn+n^2-16m^2=0
n^2+2mn-15m^2=0
(n-3m)(n+5m)=0
n=3m or n=-5m
(1) n=3m
切線方程式:nx-my=0
3mx-my=0
3x-y=0
(2) n=-5m
切線方程式:nx-my=0
-5mx-my=0
5x+y=0


2011-08-21 6:52 pm
let y =mx be tangents
mx = 4x^2 - x +1
4^2 - (m+1)x +1 = 0
(m+1)^1 - 4(4)(1 )=0 (because tangent i.e. determinant = 0)
m^2 + 2m-15=0
m=3 or -5
so tangents are y=3x or y=-5x


收錄日期: 2021-04-30 15:50:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110818000051KK00064

檢視 Wayback Machine 備份