✔ 最佳答案
let y = sin^(-1) (x/a)
sin y = x/a ,
d / dx (sin y) = d / dx (x/a)
cos y dy/dx = 1/a
dy / dx = 1/ (a cosy)
since cos y = √ [1 - (sin y)^2 ] = √ [ 1 - (x/a)^2] = 1/a √ (a^2 - x^2)
so, d [ sin^(-1) (x/a) ] /dx = 1 / { a [ 1/a √ (a^2 - x^2) ] }
= 1 / √ (a^2 - x^2)
that's proved.
hope it can help you :)