1 trigonometry Q.

2011-08-17 11:37 pm
Is sin[-1] (x/a)=1/√(a²-x²) correct? How to prove it?

回答 (2)

2011-08-26 2:32 am
✔ 最佳答案
let y = sin^(-1) (x/a)
sin y = x/a ,
d / dx (sin y) = d / dx (x/a)
cos y dy/dx = 1/a
dy / dx = 1/ (a cosy)

since cos y = √ [1 - (sin y)^2 ] = √ [ 1 - (x/a)^2] = 1/a √ (a^2 - x^2)

so, d [ sin^(-1) (x/a) ] /dx = 1 / { a [ 1/a √ (a^2 - x^2) ] }
= 1 / √ (a^2 - x^2)

that's proved.

hope it can help you :)

參考: me
2011-08-23 5:07 pm
Let y=sinx
dy/dx=cosx
dy/dx=[1-sin^2(x)]^0.5=(1-y^2)^0.5
Hence,
sin^(-1)y=x
d[sin^(-1)y]/dy=dx/dy=1/(dy/dx)=1/(1-y^2)^0.5
Therefore,
d[sin^(-1)(x/a)]/dx
={d[sin^(-1)(x/a)]/d(x/a)}{d(x/a)/dx}
={1/[1-(x/a)^2]^0.5}{1/a}
=1/(a^2-x^2)^0.5


收錄日期: 2021-04-15 15:36:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110817000051KK00663

檢視 Wayback Machine 備份