✔ 最佳答案
設等比數列{an}的各項均為正值,首項a1=1/2,前n項和為Sn,且2^10*S30
-(2^10+1)*S20+S10=0
(1)求 {an}的通項
Sol
Sn=p(r^n-1),a=2^10,x=r^10,p=a1/(1-r)
ap(x^3-1)-(a+1)p(x^2-1)+p(x-1)=0
a(x^3-1)-(a+1)(x^2-1)+(x-1)=0
ax^3-(a+1)x^2+x-a-a+1-1=0
x(ax-1)(x-1)=0
x=0(不合) or x=1/aor x=1(不合)
x=1/a
r^10=2^(-10)
r=1/2
an=(1/2)*(1/2)^(n-1)=(1/2)^n
(2)求{nSn}的前n項和Tn.
p=a1/(1-r)=(1/2)/(1/2)=1
Sn=(1/2)^n-1
Tn=Σ(k=1 to n)_[k*(1/2)^k-k]
M=1*(1/2)+2*(1/2)^2+3*(1/2)^3+…….+n*(1/2)^n
(1/2)M= 1*(1/2)^2+2*(1/2)^3+…….+(n-1)*(1/2)^n+n*(1/2)^(n+1)
--------------------------------------------------------------------------------------
(1/2)M=1/2-n*(1/2)^(n+1)
M=1-n*(1/2)^n
Tn=Σ(k=1 to n)_[k*(1/2)^k-k]
=1-n*(1/2)^n-n(2+1)(2n+1)/6