✔ 最佳答案
I assume you require a differentiation of y with respect to x.
y = x sqrt[(1 - x)/(1 + x)]
By product rule,
dydx = (dx/dx) sqrt[(1 - x)/(1 + x)] + x d{sqrt[(1 - x)/(1 + x)]} / dx
= sqrt[(1 - x)/(1 + x)] + x d{sqrt[(1 - x)/(1 + x)]} / d[(1 - x)/(1 + x)]‧d[(1 - x)/(1 + x)]/dx (Chain rule)
= sqrt[(1 - x)/(1 + x)] + x{1/2sqrt[(1 - x)/(1 + x)]}‧{-(1 + x) - (1 - x)}/(1 + x)^2 (Quotient rule)
= sqrt[(1 - x)/(1 + x)] - x/(1 + x)^2 sqrt[(1 + x)/(1 - x)]
= sqrt[(1 - x)/(1 + x)] - x / [(1 + x)^(3/2)(1 - x)^(1/2)]
= [(1 - x)(1 + x) - x] / [(1 + x)^(3/2) (1 - x)^(1/2)]
= (1 - x - x^2) / [(1 + x)^3 (1 - x)]^(1/2)
參考: Prof. Physics