求1-200合成數20分!

2011-08-07 10:17 pm
求1-200合成數!

回答 (3)

2011-08-09 8:57 pm
✔ 最佳答案
4,6,8,9,10,12,14,15,16,18,20,21,22,,24,25,26,27,28,30,32,33,34,35,36,38,39,40,
42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,
75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,100,102,104,
105,106,108,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,
126,128,129,130,132,133,134,135,136,138,140,141,142,143,144,145,146,147,
148,150,152,153,154,155,156,158,159,160,161,162,164,165,166,168,169,170,
171,172,174,175,176,177,178,180,182,183,184,185,186,187,188,189,190,192,
194,195,196,198,200




性質 所有大於2的偶數都是合數。 最小的合數為4。 每一合數都可以以唯一形式被寫成質數的乘積。(算術基本定理) 對任一大於5的合數n,
圖片參考:http://upload.wikimedia.org/math/6/6/c/66cd9dac96a3b5d022a26b7559df5430.png
。(威爾遜定理)




合數的類型分類合數的一種方法為計算其質因數的個數。一個有兩個質因數的合數稱為半質數,有三個質因數的合數則稱為楔形數。在一些的應用中,亦可以將合數分為有奇數的質因數的合數及有偶數的質因數的合數。對於後者,
圖片參考:http://upload.wikimedia.org/math/d/7/8/d786a8f6a2150cab8405b3287a7e899c.png
注意,對於質數,此函數會傳回 -1,且μ(1) = 1。而對於有一個或多個重複質因數的數字n,μ(n) = 0。另一種分類合數的方法為計算其因數的個數。所有的合數都至少有三個因數。一質數的平方數,其因數有{1,p,p2}。一數若有着比它小的整數都還多的因數,則稱此數為高合成數。另外,完全平方數的因數個數為奇數個,而其他的合數則皆為偶數個。
參考: me
2011-08-07 11:42 pm
4,6,8,9,10,12,14,15,16,18,20,21,22,,24,25,26,27,28,30,32,33,34,35,36,38,39,40,
42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,
75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,100,102,104,
105,106,108,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,
126,128,129,130,132,133,134,135,136,138,140,141,142,143,144,145,146,147,
148,150,152,153,154,155,156,158,159,160,161,162,163,164,165,166,168,169,
170,171,172,174,175,176,177,178,180,182,183,184,185,186,187,188,189,190,
192,194,195,196,198,200

2011-08-07 15:48:56 補充:
sorry,no 163
參考: me
2011-08-07 11:31 pm
ii then are not these, then it is 合成數
1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101
,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193
197,199
參考: Hope I can help you! ^_^ (From me)


收錄日期: 2021-04-13 18:09:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110807000051KK00496

檢視 Wayback Machine 備份