✔ 最佳答案
Let d be the length of the ladder.
Point A, B and O be the point of contact of the ladder with the ground, the ladder with the wall and the wall with the ground respectively.
Let angle BAO = @ (theta), (I use $ as alpha)
Let the reaction force at A and B be R1 and R2 respectively,
Friction at A be F1.
Take horizontal equilibrium,
R2 = F1 cos$ - R1 sin$ ... (1)
Take vertical equilibrium,
R1 cos$ + F1 sin$ = W ... (2)
Take moment about point A,
W(d/2)cos(@ + $) = R2(d)sin(@ + $)
W = 2R2 tan(@ + $) ... (3)
Put (3) into (2): R1 cos$ + F1 sin$ = 2R2 tan(@ + $) ... (4)
Put (1) into (4): R1 cos$ + F1 sin$ = 2(F1 cos$ - R1 sin$) tan(@ + $)
R1 [cos$ + 2sin$ tan(@ + $)] = F1 [2cos$ tan(@ + $) - sin$] ... (5)
As the system is in limiting equilibrium,
tanx = F1 / R1 ... (6)
Comparing (5) and (6):
tanx = [cos$ + 2sin$ tan(@ + $)] / [2cos$ tan(@ + $) - sin$]
tanx [2cos$ tan(@ + $) - sin$] = [cos$ + 2sin$ tan(@ + $)]
tan(@ + $) [2tanx cos$ - 2sin$] = cos$ + tanx sin$
tan(@ + $) = [cos$ + tanx sin$] / [2tanx cos$ - 2sin$]
where 90* - (@ + $) is the inclination of the ladder to the wall.
so, tan[90* - (@ + $)] = [1 + tanx tan$] / 2[tanx - tan$]
tan(@ + $) = 2(tanx - tan$) / (1 + tanx tan$) = 2 tan(x - $)
the inclination, @ + $ = arctan [2 tan(x - $)]
參考: Prof. Physics