spherical trigonometry?

2011-07-24 4:44 pm
A equiangular triangle is now drawn on a sphere. If the side of the triangle is (pi)/3 and the radius of the sphere is 1, what's the area of the triangle.[By using spherical law of cosines and E = A + B + C – 180]
[Show the steps pls]

回答 (1)

2011-07-27 1:34 pm
✔ 最佳答案
Spherical law of cosines states

cos(c) = cos(a)cos(b) + sin(a)sin(b)cos(C) (lower case the sides ; upper case the angles!)

using to get cos C :

cos pi/3 = cos pi/3 cos pi/3 + sin pi/3 sin pi/3 cos C

0.5= 0.25 + sqrt(3)/2 *sqrt(3)/2 *cos C

1/4 = 3/4 * cos C

1/3 = cos C

C= 1.231 rad

equilateral triangle so all angles the same.

Area of triangle is R^2 * E

E = A+B+C -pi (must work in radians!)

E= 1.231 *3 - pi = 0.5513

Area is 0.5513


收錄日期: 2021-04-15 15:29:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110724084421AAh8MN1

檢視 Wayback Machine 備份