✔ 最佳答案
Let v(x,t)=e^t u(x,t), then u_xx= u_t + u convertes to v_xx=v_t
and v_x(0,t)=v_x(4, t)=0, v(x,0)=(8x-1)e^0=8x-1
By the separation variable method:
X" T=XT', X"/X = T'/T and X_x(0)=0, X_x(4)=0, then
X=cos(nπx/2), T= e^(-n^2 π^2 t/ 4)
v(x,t)=∑[n=0~∞] a(n) cos(nπx/2)e^(-n^2 π^2 t/4)
v(x,0)=8x-1 =∑[n=0~∞] a(n) cos(nπx/2)
Taking the fourier half cosine for 8x-1 (for x=0~2 ), then
4a(0)=2∫[0~2] (8x-1) dx , a(0)=7
2a(n)=2∫[0~2] (8x-1) cos(nπx/2) dx, a(n)= 32/(nπ)^2 *[(-1)^n -1]
so
u(x,t)={ 7-∑[n=1~∞] 64cos[(2n-1)πx/2]/[(2n-1)π]^2 } e^(-t) for x=0~2
u(x,t)={23+∑[n=1~∞] 64cos[(2n-1)πx/2]/[(2n-1)π]^2 } e^(-t) for x=2~4
Note1: the last eq.
23+∑[n=1~∞] 64cos[(2n-1)πx/2]/[(2n-1)π]^2 } e^(-t) for x=2~4
can be obtained from
7-∑[n=1~∞] 64cos[(2n-1)πx/2]/[(2n-1)π]^2 } e^(-t) for x=0~2
by symmetry(Since x=2, 8x-1=15)
Note2: Solving by the method of Laplace transform
v_xx=v_t , v(x,0)=8x-1 then V(x,s)=8/(s√s) e^(-x√s) + (8x-1)/s
thus, v(x,t)=(8x-1)- erfc[x/(2√t)]* 8/√(πt)
hence, u(x,t)=v(x,t)*e^(-t)
2011-07-21 21:59:07 補充:
thus, v(x,t)=(8x-1)- erfc[x/(2√t)]* 8/√(πt) ( "*" is convolution)
hence, u(x,t)=v(x,t)*e^(-t) ( "*" is multiplication)
2011-07-23 18:17:34 補充:
謝謝d大對於Laplace inverse of V(x,s)的答案,so,
v(x,t)=(8x-1)+16√t/√π exp(-x^2/4t)-8x erfc[x/(2√t)]
2011-07-23 18:23:04 補充:
To: d大
1. 如果題目是x=0~inf,則會考慮用Fourier transform
為何用Laplace? 因為本題是linear PDE,取Laplace可減化一個變數的導數!
缺點是其inverse 不一定容易求得!
2. 乘以e^t化簡u項,這是習慣問題,本題不化簡亦可!
2011-07-23 18:29:30 補充:
3. 本題通常採用前面的作法,故先將u項消去,求eigenfunction時較方便!
2011-07-23 18:38:59 補充:
4. 您的提問3階ode那題,不知exp(-s^2)的inverse為何?
另一題(積分收斂發散),已約略看過題目,但提問太多,可否只寫一題呢?
2011-07-24 11:49:15 補充:
L{e^(x²/4)}不存在!