Quadratic equations

2011-07-16 6:34 pm
Form a quadratic equation in x whose roots are (5+i)/3 and(5-i)/3.

回答 (3)

2011-07-16 7:57 pm
✔ 最佳答案
Let the required quadratic equation be x^2-px+q=0

Sum of two roots:
p=(5+i)/3+(5-i)/3=(5+i+5-i)/3=10/3

Product of roots:
q=[(5+i)/3][(5-i)/3]=(5+i)(5-i)/9=(25+1)/9=26/9

Therefore the required quadratic equation is:
x^2-10x/3+26/9=0
9x^2-30x+26=0
2011-08-04 4:28 am
i think the quadratic equation is better to expressed in the simplest form,and the coefficients and the constant term of the equation should all be intergers,i.e. 9x^2-30x+26=0
2011-07-22 1:33 am
9x^2-30x+26=0
18x^2-60x+52=0
27x^2-90x+78=0
4.5x^2-15x+13=0
36x^2-120x+104=0
45x^2-150x+130=0
3x^2-10x+26/3=0
90x^2-300x+260=0
... ...


收錄日期: 2021-04-13 18:05:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110716000051KK00231

檢視 Wayback Machine 備份