數學切線與圓形

2011-07-14 12:16 am
已知與直線3x-y=1相切於點(1,2),且過點(5,1)之圓的圓心為(h,k),求其h = k=

回答 (3)

2011-07-14 1:01 am
✔ 最佳答案
已知與直線3x-y=1相切於點(1,2),且過點(5,1)之圓的圓心為(h,k),
求其h =?,k=?
Sol
(h-1)^2+(k-2)^2=(h-5)^2+(k-1)^2=r^2
-2h+1-4k+4=-10h+25-2k+1
8h-2k=21
過(1,2)垂直3x-y=1直線
x+3y=1+3*2=7
h+3k=7
3(8h-2k)+2(h+3k)=63+14
h=77/26
k=35/26


2011-07-14 4:48 am
https://lh5.googleusercontent.com/-bsEHJUtGTMo/Th2Tv4CsQqI/AAAAAAAAGb4/KLUXxw4Q6PY/hk.JPG


圖片參考:https://lh5.googleusercontent.com/-bsEHJUtGTMo/Th2Tv4CsQqI/AAAAAAAAGb4/KLUXxw4Q6PY/hk.JPG


2011-07-13 20:55:10 補充:
切線與弦的中垂線都通過圓心
即二線交點為圓心
各知識領域以利益大眾與發問者的受用度為前提

2011-07-13 20:57:34 補充:
補漏
7/3+21/2=77/6
2011-07-14 12:38 am
h=27/26 ,k=35/26

2011-07-13 16:40:29 補充:
更正
h=77/26, k=35/26

2011-07-13 17:00:39 補充:
參考想法:

(1-h)^2+(2-k)^2=r^2
(5-h)^2+(1-k)^3=r^2
==>8h-2k=21

設與切線垂直過圓心的直線方程式為x+3y+f=0
將(1,2)代入知:f=-7
再將圓心代入式中知:h+3k=7
解聯立知: h=77/26, k=35/26


收錄日期: 2021-04-30 15:58:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110713000010KK06504

檢視 Wayback Machine 備份