f.3 maths

2011-07-11 11:38 pm
x^(3 -7x +6
Factorization

{ x^(-1 - y^(-1 } / { x^(-2 - y ^(-2 }
指數定律
化簡

回答 (1)

2011-07-12 12:02 am
✔ 最佳答案
您好,我是 lop****** ,高興能解答您的問題。

問: Factorization : x^3 - 7x + 6

解:

x^3 - 7x + 6

= x^3 - x^2 + x^2 - x - 6x + 6

= x^2 ( x - 1 ) + x ( x - 1 ) - 6 ( x - 1 )

= ( x - 1 ) ( x^2 + x - 6 )

= ( x - 1 ) ( x^2 - 2x + 3x - 6 )

= ( x - 1 ) [ x ( x - 2 ) + 3 ( x - 2 ) ]

= ( x - 1 ) ( x - 2 ) ( x + 3 )

答:x^3 - 7x + 6 = ( x - 1 ) ( x - 2 ) ( x + 3 )

===============================

問: 化簡 { x^(-1) - y^(-1) } / { x^(-2) - y ^(-2) }

解:

[ x^(-1) - y^(-1) ] / [ x^(-2) - y ^(-2) ]

= ( 1/x - 1/y ) / [ (1/x)^2 - (1/y)^2 ]

= ( 1/x - 1/y ) / [ ( 1/x + 1/y )( 1/x - 1/y ) ]

= 1 / ( 1/x + 1/y )

= xy / ( x + y )

答:[ x^(-1) - y^(-1) ] / [ x^(-2) - y ^(-2) ] = xy / ( x + y )

==========================
參考: Hope I Can Help You ^_^


收錄日期: 2021-04-13 18:05:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110711000051KK00631

檢視 Wayback Machine 備份