✔ 最佳答案
(b)Suppose all solutions (x,y,z) of
2x + y + z = 4
x + 2y + z = 3
7x - y + 2z = 11
satisfy (p-1)(x^2) ≥ (p+1)yz.
Find the range of values of p.
Sol
|2 1 1|
|1 2 1|=(1/2)| 3 1|=0
|7 -1 2| |-9 -3|
| 4 1 1|
| 3 2 1|=(1/4)| 5 1|
|11 -1 2| |-15 -3|=0
So 為相依有無限組解
(2x+y+z)-(x+2y+z)=4-3
x-y=1
y=x-1
2x+(x-1)+z=4
z=5-3x
(p-1)x^2>=(p+1)(x-1)(5-3x)
(p-1)x^2>=(p+1)(-3x^2+8x-5)
(p-1)x^2+(p+1)(3x^2-8x+5)>=0
(p-1+3p+3)x^2-8(p+1)x+5(p+1)>=0
(4p+2)x^2-8(p+1)x+5(p+1)>=0
4p+2>=0
p>=-1/2------------------------(1)
64(p+1)^2-4*(4p+2)*5(p+1)<=0
64(p^2+2p+1)-20(4p^2+6p+2)<=0
-16p^2+8p+24<=0
2p^2-p-3>=0
(2p-3)(p+1)>=0
(p-3/2)(p+1)>=0
p<=-1 orp>=3/2-------------(2)
綜合(1)(2)
p>=3/2
2011-07-10 05:30:24 補充:
修改如下
綜合(1)(2)
-1 -1/2 3/2
-----*-------*-------*-------
@------------>
@---------------@
@-------@ result
-1/2<=p<=3/2
2011-07-10 05:33:59 補充:
ax^2+bx+c,a>0,恆>0
一定有2個條件
(1) 圖形開口向上
a>0
(2) 圖形與x軸最多只有一個交點
b^2-4ac<=0