F.5 M2 about Determinants~~

2011-07-09 9:05 am
*只需教我做(b)題便可以了

Consider the system of linear equations (E)
ax + y + z = 4
x + ay + z = 3
7x - y + 2z = 11,
where a is a real number.

(a) If a = 2, solve (E). (ans. x=t , y=t-1 , z=5-3t)

(b)
Suppose all solutions (x,y,z) of
2x + y + z = 4
x + 2y + z = 3
7x - y + 2z = 11
satisfy (p-1)(x^2) ≥ (p+1)yz.
Find the range of values of p.

回答 (1)

2011-07-09 12:06 pm
✔ 最佳答案
(b)Suppose all solutions (x,y,z) of
2x + y + z = 4
x + 2y + z = 3
7x - y + 2z = 11
satisfy (p-1)(x^2) ≥ (p+1)yz.
Find the range of values of p.
Sol
|2  1 1|
|1  2 1|=(1/2)| 3  1|=0
|7 -1 2|      |-9 -3|
| 4  1 1|
| 3  2 1|=(1/4)|  5  1|
|11 -1 2|      |-15 -3|=0
So 為相依有無限組解
(2x+y+z)-(x+2y+z)=4-3
x-y=1
y=x-1
2x+(x-1)+z=4
z=5-3x
(p-1)x^2>=(p+1)(x-1)(5-3x)
(p-1)x^2>=(p+1)(-3x^2+8x-5)
(p-1)x^2+(p+1)(3x^2-8x+5)>=0
(p-1+3p+3)x^2-8(p+1)x+5(p+1)>=0
(4p+2)x^2-8(p+1)x+5(p+1)>=0
4p+2>=0
p>=-1/2------------------------(1)
64(p+1)^2-4*(4p+2)*5(p+1)<=0
64(p^2+2p+1)-20(4p^2+6p+2)<=0
-16p^2+8p+24<=0
2p^2-p-3>=0
(2p-3)(p+1)>=0
(p-3/2)(p+1)>=0
p<=-1 orp>=3/2-------------(2)
綜合(1)(2)
p>=3/2




2011-07-10 05:30:24 補充:
修改如下
綜合(1)(2)

    -1    -1/2     3/2
-----*-------*-------*-------
             @------------>
     @---------------@
             @-------@ result
-1/2<=p<=3/2

2011-07-10 05:33:59 補充:
ax^2+bx+c,a>0,恆>0
一定有2個條件
(1) 圖形開口向上
a>0
(2) 圖形與x軸最多只有一個交點
b^2-4ac<=0


收錄日期: 2021-04-13 18:06:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110709000051KK00057

檢視 Wayback Machine 備份