✔ 最佳答案
1. 1+1/i^2+1/i^3+1/i^4+...+1/i^100= ?
Sol
1+1/i^2+1/i^3+1/i^4+...+ 1/i^100
=1+1/i+1/i^2+1/i^3+1/i^4+...+ 1/i^100-1/i
=(1+1/i+1/i^2+1/i^3)+(1/i^4+1/i^5+1/i^6+1/i^7)+…
+(1/i^96+1/i^97+1/i^98+1/i^99)+1/i^100-1/i
=(1-i-1+i)+(1-i-1+i)+…+(1-i-1+i)+1/i^100-1/i
=-1+i
2. z^2-4z-4+6i = 0求z = ?
z^2-4z-4+6i=0
z^2-4z+(-4+6i)=0
(-4)^2-4*1*(-4+6i)
=16+16-24i
=32-24i
=36-2*6*(2i)+(2i)^2
=(6-2i)^2
z=[4+/-(6-2i)]/2
(1) z=[4+(6-2i)]/2
z=5-i
(2) z=[4-(6-2i)]/2
z=-1+i
3. a,b 屬於實數,若1/(3+i)+1/(a+bi)=3/5,則數對(a,b)= ?
Sol
1/(3+i)+1/(a+bi)=3/5
5(a+bi)+5(3+i)=3(3+i)(a+bi)
( 5a +15)+i(5b+5)=3[ 3a -b+i(a+3b)]
So
5a +15= 9a-3b
4a-3b=15-------------------
5b+5= 3a +9b
3a +4b=5---------------------
4( 4a-3b)+3( 3a +4b)=4*15+3* 5
a=3
b=-1
(a,b)=(3,-1)
4. a,b屬於實數,且( 2a +i)/(4+3i)之共軛複數為 -5+bi,則a+b = ?
Sol
( 2a +i)/(4+3i)+(-5+bi)=-10
( 2a +i)+(-5+bi)(4+3i)=-10(4+3i)
( 2a +i)+[-20-3b+i(4b-15)]=-40-30i
2a-20-3b=-40
2a-3b=-20--------------------
1+4b-15=-30
4b=-16
b=-4
2a +12=-20
a=-16
a+b=-20
5. 求[(1+i)/(1-i)]^2003之值?
Sol
(1+i)/(1-i)
=(1+i)^2/[(1-i)(1+i)]
=(2i)/2
=i
i^2003
=i^3
=-i
6. 若複數z的虛部為3,1/z的實部為2/13,求z?
Sol
設 z=a+3i,a為實數
1/x=1/(a+3i)=(a-3i)/(a^2+9)
So
a/(a^2+9)=2/13
2a ^2+18= 13a
2a ^2-13a+18=0
( 2a-9)(a-2)= 0
a=9/2 or a=2
So
z=(9/2)+3i orz=2+3i
7. 設z 屬於C,解方程式 |z|+ z= 8-4i,得 z=?
Sol
設 z=a+bi,a,b為實數
√(a^2+b^2)+a+bi=8-4i
b=-4
√(a^2+16)+a= 8
a^2+16=a^2-16a+ 64
a=3
z=3-4i
2011-07-08 02:54:33 補充:
=(1-i-1+i)+(1-i-1+i)+…+(1-i-1+i)+1/i^100-1/i
=1/i^2+i^2/i
=-1+i