高一數學題目〈急〉

2011-07-07 4:19 am
題目是:「設n為二位之整數,若n3/6+n/2-5/3(n的三次方除以6+2分之n-3分之5)為整數,則n有幾個解?」請大家幫忙解開並附上詳解,謝謝

回答 (3)

2011-07-07 4:46 am
✔ 最佳答案
題目是:「設n為二位之整數,若n^3/6+n/2-5/3為整數,則n有幾個解?
Sol
n^3/6+n/2-5/3=(n^3+3n-10)/6
p為整數
(1) n=3p(不合)
(2) n=6p+1
n^3+3n-10
=>1^3+3-10
=>-6----------------------
(3) n=6p+2
n^3+3n-10
=>2^3+6-10
=>4(不合)
(4) n=6p+3
n^3+3n-10
=>3^3+9-10
=>26(不合)
(5) n=6p+4
n^3+6n-10
=>4^3+4*6-10
=>78-----------------------
(6) n=6p+5
n^3+6n-10
=>5^3+6*5-10
=>145(不合)
So
n=6p+1 or n=6p+4
10<=6p+1<=99
9<=6p<=98
1.5<=p<=16.33
2<=p<=16
16-2+1=15
10<=6p+4<=99
6<=6p<=95
1<=p<=15.83
1<=p<=15
15-1+1=15
15+15=30


2011-07-07 11:28 am
月下的解法不錯耶!

消去3次方, 只剩n


收錄日期: 2021-05-02 10:44:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110706000010KK09084

檢視 Wayback Machine 備份