數學知識交流---求值(4)

2011-07-04 2:47 am
(1)



1^4 + 2^4 + 3^4 + ... + 16^4 + 17^4

的值。

(2)



1 + 2^2 + 3 + 4^2 + 5 + 6^2 + ... + 117 + 118^2 + 119 + 120^2

的值。

(3)



1 + 2^2 + 3^3 + 4 + 5^2 + 6^3 + 7 + 8^2 + 9^3 + ... + 415 + 416^2 + 417^3 + 418 + 419^2 + 420^3

的值。

回答 (3)

2011-07-04 5:25 am
✔ 最佳答案
(1) 求 1⁴ + 2⁴ + 3⁴ + ... + 16⁴ + 17⁴ 的值。
解:1⁴ + 2⁴ + 3⁴ + ... + 16⁴ + 17⁴
= (6×17⁵ + 15×17⁴ + 10×17³ - 17) / 30
= (8519142 + 1252815 + 49130 - 17) / 30
= 9821070 / 30
= 327369

(2) 求 1 + 2² + 3 + 4² + 5 + 6² + ... + 117 + 118² + 119 + 120² 的值。
解:1 + 2² + 3 + 4² + 5 + 6² + ... + 117 + 118² + 119 + 120²
= (1+3+5+...+119) + (2²+4²+6²+...+120²)
= (1+119)×[(119-1)÷2+1]/2 + 2²× (1²+2²+3²+...+60²)
= 120×30 + 4×[60×(60+1)×(60×2+1)/6]
= 3600 + 295240
= 298840

(3) 求1 + 2² + 3³ + 4 + 5² + 6³ + 7 + 8² + 9³ + ... + 415 + 416² + 417³ + 418 + 419² + 420³
的值。
解:1 + 2² + 3³ + 4 + 5² + 6³ + 7 + 8² + 9³ + ... + 415 + 416² + 417³ + 418 + 419² + 420³
= (1+4+7+...+418) + (2²+5²+8²+...+419²) + (3³+6³+9³+...+420³)
= (1+418)×[(418-1)÷3+1]/2 + [(3×0+2)²+(3×1+2)²+...+(3×139+2)²] + 3³× (1³+2³+3³+...+140³)
= 419×70 + [(3×0)²+(3×1)²+...(3×139)²] + 2×2×(3×0+3×1+...+3×139) + 2²×140 + 27×[140×(140+1)/2]²
= 29330 + (3²+6²+9²+...+417²) + 4×3×(1+2+...+139) + 560 + 2630256300
= 3²× (1²+2²+...+139²) + 12×(1+139)×139/2 + 2630286190
= 9 × [139×(139+1)×(139×2+1)/6] + 116760 + 2630286190
= 8144010 + 116760 + 2630286190
= 2638546960

2011-07-03 21:46:59 補充:
公式:
1. 1 + 2 + 3 + ... + n = n(n+1)/2
2. 1² + 2² + 3² + ... + n² = n(n+1)(2n+1)/6
3. 1³ + 2³ + 3³ + ... + n³ = [n(n+1)/2]²
4. 1⁴+ 2⁴+ 3⁴+ ... + n⁴= (6n⁵+ 15n⁴+ 10n³ - n) / 30

http://hk.knowledge.yahoo.com/question/question?qid=7011031901328

2011-07-03 22:31:46 補充:
若要用較簡單(即較低程度)的方法來得到以上公式,可以用待定係數法:
1. 設1 + 2 + 3 + ... + n = an² + bn + c
當n = 1時,1 = a + b + c ------(1)
當n = 2時,3 = 4a + 2b + c --(2)
當n = 3時,6 = 9a + 3b + c --(3)
解(1), (2), (3),得:
a = 1/2, b = 1/2, c = 0
所以1 + 2 + 3 + ... + n = n²/2 + n/2 = n(n+1)/2。

2011-07-03 22:32:43 補充:
2. 設1² + 2² + 3² + ... + n² = an³ + bn² + cn + d
當n = 1時,1 = a + b + c + d --------------(1)
當n = 2時,5 = 8a + 4b + 2c + d --------(2)
當n = 3時,14 = 27a + 9b + 3c + d -----(3)
當n = 4時,30 = 64a + 16b + 4c + d ---(4)
解(1), (2), (3), (4),得:
a = 1/3, b = 1/2, c = 1/6, d = 0

2011-07-03 22:40:20 補充:
如此類推...
2011-07-04 10:54 am
Now denote ∑(k=418, k=1) to ∑
For (3),
The answer = (1+4+27) + (∑[(1+3k)+(2+3k)^2+(3+3k)^3])
_ = (32) + [ 27∑(k^3) + (27*3+9)∑(k^2) + (6+27*3+3)∑(k)
_ + (1+4+27)∑(1) ] ------(1)

2011-07-04 02:54:34 補充:
_By 疾風知勁草,烈火煉真金's formula,
_∑(k^3) = [(418)(419)/2]^2
_∑(k^2) = [418(419)(837)/6]
_∑(k) = [418(419)/2]
Of course, ∑(1) =418
Subst. the above term into (1), we have
The answer = 2638546960
2011-07-04 3:01 am
1. 327369
2. 298840
3. 2638546960

用Wolfram Alpha 就能算出來了


收錄日期: 2021-04-13 18:04:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110703000051KK00797

檢視 Wayback Machine 備份