✔ 最佳答案
1. 12x^3 + 10x^2 + 2 = 2(6x^3 + 5x^2 + 1)
設 f(x) = 6x^3 + 5x^2 + 1, 則 f(-1) = -6 + 5 + 1 = 0
根據因式定理, x + 1是f(x)的因式。
利用長除法, 得 f(x) = (x + 1)(6x^2 - x + 1)
所以 12x^3 + 10x^2 + 2 = 2(x + 1)(6x^2 - x + 1)
2. P(1/2) = 2(1/2)^3 + (2a + 3)(1/2)^2 - 1/2 + 2 = 5/2 + a/2
P(-a) = -2a^3 + (2a + 3)a^2 + a + 2 = 3a^2 + a + 2
根據題意, P(-a) = 2P(1/2)
3a^2 + a + 2 = 5 + a
a^2 = 1
a = 1 或 -1
3. f(2/3) = -1
a(2/3)^3 - (2/3)^2 + b(2/3) - 5 = -1
4a + 9b = 60--------------------(1)
g(-1/3) = 2/9
9(-1/3)^3 -b(-1/3)^2 - a(-1/3) - 1 = 2/9
3a - b = 14-----------------------(2)
解 (1) 及 (2), 得 a = 6, b = 4
設 h(x) = f(x) - g(x)
當 h(x) 除以x+2時的餘數
= h(-2)
= f(-2) - g(-2)
= 6(-2)^3 - (-2)^2 + 4(-2) - 5 - [9(-2)^3 - 4(-2)^2 - 6(-2) - 1]
= 12 , 亦即f(x) - g(x) 除以 x + 2 時的餘數。