證明題 (20分)

2011-06-24 8:35 am
Prove that for any positive integers n,
1*n + 2*(n-1) + 3*(n-2) + ... + (n-1)*2 + n*1
= 1/6 n(n+1)(n+2)

回答 (1)

2011-06-24 9:24 am
✔ 最佳答案
Prove that for any positive integers n
1*n + 2*(n-1) + 3*(n-2) + ... + (n-1)*2 + n*1=n(n+1)(n+2)/6
Sol
1*n + 2*(n-1) + 3*(n-2) + ... + (n-1)*2 + n*1
=Σ(k=1 to n)_[k*(n+1-k)]
=Σ(k=1 to n)_[(n+1)k-k^2]
=(n+1)Σ(k=1 to n)_k-Σ(k=1to n)_k^2
=(n+1)*[n(n+1)/2]-n(n+1)(2n+1)/6
=[n(n+1)/6]*[3(n+1)-(2n+1)]
=[n(n+1)/6]*(n+2)
=n(n+1)(n+2)/6
儘量不要用數學歸納法




收錄日期: 2021-04-30 15:53:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110624000051KK00031

檢視 Wayback Machine 備份