problems on sequences.

2011-06-22 10:19 pm
Given a(1)=a, a(n+1)= n(n+1)/[2n-a(n)] for n=2,3,4,..., find
(1) a(n)=?
(2) a(1)*a(2)*a(3)*...*a(n+1)/ n! = ?
更新1:

Sorry! for n=1,2,3,4,...

更新2:

0 < a < 1

回答 (3)

2011-07-04 11:42 pm
✔ 最佳答案
Ha!
Let f(n) = a(n) /n for n=1,2,3,..
Then
f(n+1) = 1/ [2-f(n)] which can be solved analytically

2011-07-03 19:33:59 補充:
Ref: http://hk.knowledge.yahoo.com/question/question?qid=7010071501617

2011-07-03 19:39:04 補充:
Let g(n) = 2-f(n)
then
2 - g(n+1) = 1/g(n)
g(n+1) = 2 - 1/g(n) for n=1,2,...

Let h(n) = g(1)g(2)...g(n) n=1,2,...
then

multiply the above by g(n)g(n-1)...g(1),
h(n+1) = 2h(n) - h(n-1) n=2,3
==> ordinary diff. equation

2011-07-03 19:39:51 補充:
Very complicated

2011-07-04 15:42:27 補充:
As follows:

圖片參考:http://imgcld.yimg.com/8/n/HA00140412/o/701106220053713873462342.jpg
2011-06-23 5:56 pm
1. There are something wrong in (2).
2. Can it be solved analytically?
2011-06-22 11:00 pm
Given a(1)=a,a(n+1)= n(n+1)/[2n-a(n)] for n=2,3,4,...,find
(1) a(n)=?
Sol
a(2)=1*2/(2-a)=2/(2-a)
a(3)=2*3/[4-2/(2-a)]=6(2-a)/[8-4a-2]=6(2-a)/(6-4a)=3(2-a)/(3-2a)
a(4)=3*4/[6-3(2-a)/(3-2a)]=12(3-2a)/[18-12a-6+ 3a ]=12(3-2a)/(12-9a)
=4(3-2a)/(4-3a)
a(5)=4*5/[8-4(3-2a)/(4-3a)]=4*5*(4-3a)/[32-24a-12+ 8a ]
=40(4-3a)/(20-16a)=5(4-3a)/(5-4a)
……
a(n)=n[n-1-(n-2)a]/[n-(n-1)a]
(2) a(1)*a(2)*a(3)*...*a(n+1)/ n! = ?
Sol
a(1)*a(2)*a(3)*...*a(n+1)/ n!
=a*[2/(2-a)]*[3(2-a)/(3-2a)]*[4(3-2a)/(4-3a)]*…*
{(n-1)[n-2-(n-3)a]/[n-1-(n-2)a]}*{n[n-1-(n-2)a]/[n-(n-1)a]}/n!
={a*2*3*4*…*n/[n-(n-1)a]}/n!
=a/[n-(n-1)a]
=a/(n-na+a)




收錄日期: 2021-04-30 15:57:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110622000051KK00537

檢視 Wayback Machine 備份