✔ 最佳答案
x + y = a (Given)
x^2 + y^2 = b (Given)
(a) x + y = a
Square on both sides
(x + y)^2 = a^2
x^2 + 2xy + y^2 = a^2
b + 2xy = a^2
-2xy = b – a^2
-xy = (b – a^2)/2 ------------- (1)
x^3 + y^3 = (x + y) (x^2 – xy + y^2)
= a (b – xy)
= a(b +(b – a^2)/2)
= ab +a(b-a^2)/2
= (2ab +ab – a^3)/2
= (3ab – a^3)/2
x^3 + y^3 = (3ab – a^3)/2
(b) x^4 + y^4 = (x^2 +(2^0.5)xy + y^2) (x^2 - (2^0.5)xy + y^2)
= (b +(2^0.5)xy ) (b - (2^0.5)xy)
= b^2 -2(x^2)(y^2)
= b^2 -2(xy)^2 ----------------------- (2)
From equation (1) above,
-xy = (b – a^2)/2
xy = (a^2 – b)/2
(xy)^2 = (a^2 – b)^2/4 ------------ (3)
Substitute equation (3) into equation (2)
x^4 + y^4 = b^2 –[2(a^2 – b)^2]/4
x^4 + y^4 = b^2 – [(a^2 – b)^2]/2
x^4 + y^4 = b^2 – (1/2)[(a^2 – b)^2]
x^4 + y^4 = b^2 – (1/2)[(a^2 – b)^2]
Check:
Let x = 1, y = 2
a = x + y = 1+2 = 3
x^2 + y^2 = b
1^2 + 2^2 = b
b = 5
x^4 + y^4 = 1^4 + 2^4 = 17
b^2 – 1/2 [(a^2 – b)^2] = 5^2 – 1/2 [(3^2 – 5)^2]
= 25 – 1/2 [4^2]
= 25 – 8
= 17
2011-07-05 11:11:20 補充:
You have to know the factorization of
x^4 + y^4 = [x^2 + (2^0.5)xy + y^2] [x^2 - (2^0.5)xy + y^2]
where (2^0.5) is square root of 2