中4數廷三角學題

2011-06-22 12:36 am
sinθ + cosθ = 7/13 其中 3派/2<θ<2派
a.求sinθ - cosθ的值
b.由此,求 sin(3派/2 -θ) 的值

求做法
tanks all~

回答 (3)

2011-06-22 1:10 am
✔ 最佳答案
a)sinθ + cosθ = 7/13(sinθ + cosθ)² = 49/169sin²θ + cos²θ + 2sinθ cosθ = 49/1691 + 2sinθ cosθ = 49/169- 2sinθ cosθ = 120/169sin²θ + cos²θ - 2sinθ cosθ = 1 + 120/169(sinθ - cosθ)² = 289/169sinθ - cosθ = 17/13 (捨去因 3π/2 < θ < 2π , 有 sinθ < 0 < cosθ ) 或
sinθ - cosθ = - 17/13
b)

由a) :sinθ + cosθ = 7/13 .....(1)
{
sinθ - cosθ = - 17/13 .....(2)(1) - (2) :2cosθ = 7/13 + 17/13cos θ = - 12/13故sin(3π/2 - θ)= - cos θ= 12/13


2011-06-21 17:21:16 補充:
修正 b):

(1) - (2) :

2cosθ = 7/13 + 17/13

cos θ = 12/13



sin(3π/2 - θ)

= - cos θ

= - 12/13
2011-06-23 2:39 am
Sinθ+Cosθ = 7/13 其中 3π/2<θ<2π
求Sinθ-Cosθ的值
Sol
3π/2<θ<2π
Sinθ<0,Cosθ>0
Set Sinθ-Cosθ=p<0
Sinθ=p/2+7/26
Cosθ=7/26-p/2
(p/2+7/26)^2+(7/26-p/2)^2=1
(p+7/13)^2+(7/13-p)^2=4
2p^2+98/169=4
2p^2=578/169
p^2=289/169
p=-17/13
2011-06-22 12:43 am
a. 17/13
b. -cos(2)


收錄日期: 2021-04-21 22:22:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110621000051KK00700

檢視 Wayback Machine 備份