maths-urgent!!! dy/dx

2011-06-21 4:40 am
y=[(x-1)^3]/[3(x-4)^2]find dy/dx and (d^2)y/dx^2

回答 (1)

2011-06-21 4:53 pm
✔ 最佳答案
y = (x - 1)3/[3(x - 4)2]

dy/dx = [3(x - 4)2d(x - 1)3/dx - 3(x - 1)3d(x - 4)2/dx]/[9(x - 4)4]

= [9(x - 4)2(x - 1)2 - 6(x - 1)3(x - 4)]/[9(x - 4)4]

= [3(x - 4)2(x - 1) - 2(x - 1)3]/[3(x - 4)3]

= [3(x3 - 9x2 + 25x + 16) - 2(x3 - 3x2 + 3x - 1)]/[3(x - 4)3]

= (x3 - 21x2 + 69x + 50)/[3(x - 4)3]

d2y/dx2 = [3(x - 4)3d(x3 - 21x2 + 69x + 50)/dx - 3(x3 - 21x2 + 69x + 50)d(x - 4)3/dx]/[9(x - 4)6]

= [3(x - 4)3(3x2 - 42x + 69) - 9(x3 - 21x2 + 69x + 50)(x - 4)2]/[9(x - 4)6]

= [(x - 4)(3x2 - 42x + 69) - 3(x3 - 21x2 + 69x + 50)]/[3(x - 4)4]

= [(3x3 - 54x2 + 237x - 276) - 3(x3 - 21x2 + 69x + 50)]/[3(x - 4)4]

= (9x2 + 30x - 426)/[3(x - 4)4]

= (3x2 + 10x - 142)/(x - 4)4
參考: 原創答案


收錄日期: 2021-04-20 00:50:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110620000051KK01032

檢視 Wayback Machine 備份