maths(16) - 方程、餘數問題

2011-06-19 10:25 pm
試求下列方程組的正整數解(x, y, z)。
2x + y = z - 1 ... (1)
8x^3 + y^3 = z^2 - 1 ... (2)


試求以下數除以2002的餘數。
3! x 3 + 4! x 4 + 5! x 5 + .... + 90! x 90 + 91! x 91

回答 (3)

2011-06-19 11:58 pm
✔ 最佳答案
試求下列方程組的正整數解(x,y,z)。
2x +y=z-1 ..............(1)
8x^3+y^3=z^2-1 .... (2)
Sol
(2)/(1)
4x^2-2xy+y^2=z+1
4x^2-2xy+y^2-2=z-1
4x^2-2xy+y^2-2=2x+y
4x^2+x(-2y-2)+(y^2-y-2)=0
D=(-2y-2)^2-4*4*(y^2-y-2)
D/4=y^2+2y+1-4y^2+4y+8
=-3y^2+6y+9=p^2,p>=0
3y^2-6y=9-p^2
3y^2-6y+3=12-p^2
3(y-1)^2=12-p^2
(a) p=0 =>y=3
2x +3=z-1
8x^3+27=z^2-1
z=2x+4
8x^3+27=4x^2+16x+16-1
8x^3-4x^2-16x+12=0
2x^3-x^2-4x+3=0
(2x^3-2x^2)+(x^2-x)+(-3x+3)=0
2x^2(x-1)+x(x-1)-3(x-1)=0
(2x^2+x-3)(x-1)=0
(2x+3)(x-1)(x-1)=0
So
x=1(重根) or x=-3/2(不合)
z=6
(x,y,z)=(1,3,6)
(b) p=1 (不合)
(c) p=2 (不合)
(d) p=3 (不合)

試求以下數除以2002的餘數。
3!*3+4!*4+5!*5+ .... +90!*90+91!*91
Sol
2002=2*7*11* 13
A =3!*3+4!*4+5!*5+ .... +90!*90+91!*91
B=4!+5!+6!+…+92!
B-A=3!+4!+5!+…+91!
B=4!+5!+6!+…+92!
=>4!+5!+6!+…+12!
B-A=3!+4!+5!+…+91!
=>3!+4!+5!+…+12!
A=B-(B-A)
=>(4!+5!+6!+…+12!)-(3!+4!+5!+…+12!)
=>-3!
=>-6+2002
=>1996




2011-06-20 12:35 am
作為你的回答吧~~~
2011-06-20 12:16 am
1)

明顯 2x + y = z - 1 > 0 ,

(2) / (1) :

(8x³ + y³) / (2x + y) = (z² - 1) / (z - 1)

4x² - 2xy + y² = z + 1 ,

利用(1) :

4x² - 2xy + y² = 2x + y + 2

4x² - 4xy + y² = 2x + y + 2 - 2xy

(2x - y)² - 3 = 2x + y - 2xy - 1

(2x - y)² - 3 = - (2x - 1)(y - 1) ≤ 0

故 (2x - y)² ≤ 3

2011-06-19 16:16:46 補充:
Case 1 :

(2x - y)² = 1
{
- (2x - 1)(y - 1) = - 2

==>

2x - y = 1
{
(2x - 1)(y - 1) = 2

解之得 (x = 0 , y = - 1)捨 或 (x = 3/2 , y = 2) 捨



2x - y = - 1
{
(2x - 1)(y - 1) = 2

解之得 (x = 1 , y = 3) 或 (x = -1/2 , y = 0) 捨

2011-06-19 16:16:52 補充:
Case 2 :

(2x - y)² = 0
{
- (2x - 1)(y - 1) = - 3

==>

2x - y = 0
{
(2x - 1)(y - 1) = 3

解得(x = (1 ± √3)/2 , y = 1 ± √3) 捨

故方程組的正整數解 :

(x = 1 , y = 3 , z = 6)

2011-06-19 16:47:08 補充:
我很懶惰,回答在此算了^^"


收錄日期: 2021-04-21 22:26:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110619000051KK00481

檢視 Wayback Machine 備份