三角學(10點)

2011-06-19 7:57 pm
按右鍵「另存圖片」再開啟會睇到清楚d
教我做圈住咗嘅題目…唔該哂

答案 :17.(a) cos theta = -3/5
18. (b) 極大值 = 3/2,極小值 = 1/4
21. (b) 1
圖片參考:http://imgcld.yimg.com/8/n/HA00230702/o/701106190031513873461171.jpg

回答 (2)

2011-06-19 8:38 pm
✔ 最佳答案

圖片參考:http://i51.tinypic.com/2zi27io.gif



http://i51.tinypic.com/2zi27io.gif

2011-06-19 19:25:53 補充:
兩根之積=-1<0與方程有兩個相異實根沒關,
Sorry,之前以為証方程有正負實根。
2011-06-19 8:35 pm
17.(a)
[cos(180°+θ) + 3]/sin(270°-θ) = 6
(-cosθ + 3)/(-cosθ) = 6
-cosθ + 3 = -6cosθ
5cosθ = -3
cosθ = -3/5


=====
18.(a)
左式 = (2 - x)/(3 + x)
= (5 - 3 - x)/(3 + x)
= [5 - (3 + x)]/(3 + x)
= [5/(3 + x)] - [(3 + x)/(3 + x)]
= [5/(3 + x)] - 1
= 右式

因此,(2 - x)/(3 + x) = [5/(3 + x)] - 1

18.(b)
令 sinθ = x,由(a)得:
(2 - sinθ)/(3 + sinθ)
= [5/(3 + sinθ)] - 1

sinθ 愈大,則上式的數值愈小。

sinθ 的極小值為 -1,故上式是極大值
= [5/(3 + (-1))] - 1
= 3/2

sinθ 的極大值為 1,故上式是極大值
= [5/(3 + 1)] - 1
= 1/4


=====
21.
(a)
四邊形內角和 = 360°
90° + ∠B + ∠C + ∠D = 360°
∠B + ∠C + ∠D = 270°
∠B + ∠C = 270° - ∠D
sin(∠B + ∠C) = sin(270° - ∠D)
故得證 sin(∠B + ∠C) = -cos∠D

(b)
原式
= [sin270°(-cos∠D)sin(360° - 90° -∠C)sin(360° - 90° - ∠B)] / (cos∠Bcos∠Ccos∠D)
= [(-1)(-1)sin(270° -∠C)sin(270° - ∠B)] / (cos∠Bcos∠C)
= [(-cos∠C)(-cos∠B)] / (cos∠Bcos∠C)
= 1

2011-06-20 13:02:30 補充:
1.(b)
cosθ = -3/5
θ = (180 - 53.1)°, (180 + 53.1)°
θ = 126.9°, 233.1°

(1.(b) 應是沒有發問的嗎?)

2011-06-20 13:12:10 補充:
20. 沒有圈上,還以為是沒有發問的。答案如下:

x² - 2cosθ° - 1 = 0

判別式 Δ
= (-2cosθ°)² - 4 x 1 x (-1)
= 4 + 4cos²θ°

對所有實數 θ,cos²θ° > 0
因此,判別式 Δ > 0
該方程有兩個實根。
參考: andrew, andrew


收錄日期: 2021-04-13 18:02:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110619000051KK00315

檢視 Wayback Machine 備份