limit(2)

2011-06-18 1:49 am
lim(x→∞) {√[x^3/(x-1)]-x}
更新1:

ans is 2

回答 (2)

2011-06-18 2:52 am
✔ 最佳答案
lim(x→∞) √[x³ / (x-1)] - x= lim(x→∞) (√[x³ / (x-1)] - x) (√[x³ / (x-1)] + x) / (√[x³ / (x-1)] + x)= lim(x→∞) (x³ / (x-1) - x²) / (√[x³ / (x-1)] + x)= lim(x→∞) [x² / (x-1)] / (√[x³ / (x-1)] + x)= lim(x→∞) x² / [√[x³ (x-1)] + x(x-1)]= lim(x→∞) x / [√[x(x-1)] + (x-1)]= lim(x→∞) 1 / [√(1 - 1/x) + 1 - 1/x]= 1 / [√(1 - 0) + 1 - 0]= 1/2
2011-06-18 3:23 am


收錄日期: 2021-04-20 00:51:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110617000051KK00775

檢視 Wayback Machine 備份