✔ 最佳答案
求曲線x² + y² = 25的切線方程,切線通過(15, -5)。
x² + y² = 25
(d/dx)(x² + y²) = 0
2x + 2yy' = 0
y' = -x/y
設切點為 (h, k)。
(k + 5)/(h - 15) = -h/k
k² + 5k = -h² + 15h
h² + k² = 15h - 5k ... (1)
T 在曲線 x²+ y² = 25 上:
h² + k² = 25 ...... (2)
(1) = (2):
15h - 5k = 25
3h - k - 5 = 0
k = 3h - 5 ...... (3)
把(3)代入(2):
h² + (3h - 5)² = 25
h² + 9h² - 30h + 26 = 0
10h² - 30h = 0
10h(h - 3) = 0
h = 0 or h = 3
當 h=0:
把 h=0 代入(3): k = 3(0) - 5
k = -5
切線為連接(0, -5) 與(15, -5) 之直線。
切線:
y = -5
y + 5 = 0
當 h=3:
把 h=3 代入(3): k = 3(3) - 5
k = 4
切線為連接(3, 4) 與(15, -5) 之直線。
切線:
(y - 4)/(x - 3) = (4 + 5)/(3 - 15)
(y - 4)/(x - 3) = -3/4
4y - 16 = -3x + 9
3x + 4y - 25 = 0
切線為: y + 5 = 0 及 3x + 4y - 25 = 0
2011-06-17 01:34:55 補充:
另一做法:
http://hk.knowledge.yahoo.com/question/question?qid=7011061700007