✔ 最佳答案
1a) dy/dx = 5(ln 2x + cos x)4 d(ln 2x + cos x)/dx
= 5(ln 2x + cos x)4 (1/x - sin x)
b) dy/dx = x2 d[√(1 - 3x + x2)]/dx + 2x√(1 - 3x + x2)
= x2/[2√(1 - 3x + x2)] d(1 - 3x + x2)/dx + 2x√(1 - 3x + x2)
= x2(-3 + 2x)/[2√(1 - 3x + x2)] + 2x√(1 - 3x + x2)
= [(-3x2 + 2x3) + 4x(1 - 3x + x2)]/[2√(1 - 3x + x2)]
= (-3x2 + 2x3 + 4x - 12x2 + 4x3)/[2√(1 - 3x + x2)]
= (6x3 - 15x2 + 4x)/[2√(1 - 3x + x2)]
2a) f'(x) = 4x(1 - 2x) - 4x2
= -12x2 + 4x
f"(x) = -24x + 4
For f'(x) = 0, x = 0 or 1/3
With f"(0) > 0 and f"(1/3) < 0, x = 0 and x = 1/3 gives a local min. and max. resp.
b) Min. = (0, 0), max. (1/3, 2/27)
Another x-intercept at (1/2, 0)
Point of inflexion at (1/6, 1/54)
4) We take the improper integral:
∫(x = 6 → ∞) dx/x
= [ln x] (x = 6 → ∞)
which yields an infinite value since ln x tends to ∞ as x → ∞.
5) (13x - 4)/(6x2 - x - 2)
= (13x - 4)[(3x - 2)(2x + 1)]
= 2/(3x - 2) + 3/(2x + 1)
So ∫(13x - 4)dx/(6x2 - x - 2)
= ∫[2/(3x - 2) + 3/(2x + 1)]dx
= (2/3) ln |3x - 2| + (3/2) ln |2x + 1| + C