(10點!!!急急急!!!!)sin,con,tan和開方根

2011-06-09 12:41 am
我想問幾條關於sin, con, tan 和開方根的數學問題, 請各位幫幫忙~~

1) a) Find

i) cos^2 1° + cos^2 89°,

ii) cos^2 2° + cos^2 88°

b) Hence, find the value of cos^2 1° + cos^2 2° + ...... + cos^2 88° + cos^2 89°

c) By using the reslut of (b), find the value of sin^2 1°+sin^2 2°+ ...... +
sin^2 88° + sin^2 89°

2) a) Expand (1-u)^2

b) Hence simplify √(√(81-162cos^2 x + 81 cos^4 x))
更新1:

請加上詳細的解釋, 謝謝!!!

回答 (2)

2011-06-09 1:27 am
✔ 最佳答案
1(a)(i)
cos^2 1° + cos^2 89°
= cos^2 1° + cos^2 (90°-1°)
= cos^2 1° + sin^2 1°
= 1


1(a)(ii)
cos^2 2° + cos^2 88°
= cos^2 2° + cos^2 (90°-2°)
= cos^2 2° + sin^2 2°
= 1


1(b)
cos^2 1° + cos^2 2° + ...... + cos^2 88° + cos^2 89°
= (cos^2 1° + cos^2 89°) + (cos^2 2° + cos^2 88°) + ... + cos^2 45°
= 44.5


1(c)
sin^2 1°+sin^2 2°+ ...... + sin^2 88° + sin^2 89°
= cos^2 89° + cos^2 88° + ...... + cos^2 2° + cos^2 1°
= 44.5


2(a)
( 1 - u )^2 = 1 - 2u + u^2


2(b)
√( √(81-162cos^2 x + 81 cos^4 x) )
= √( √(9 - 9cos^2 x)^2 )
= √(9 - 9cos^2 x)

2011-06-08 17:35:00 補充:
2(b) 要加一行 !

√[ √(81-162cos^2 x + 81 cos^4 x) ]
= √[ √( 9^2 - 2(9)(9cos^2 x) + (9cos^2 x)^2 ) ]
= √[ √( 9 - 9cos^2 x)^2 ]
= √(9 - 9cos^2 x)

2011-06-12 19:15:29 補充:
2(b) 仲有得做 !

√[ √(81-162cos^2 x + 81 cos^4 x) ]
= √[ √( 9^2 - 2(9)(9cos^2 x) + (9cos^2 x)^2 ) ]
= √[ √( 9 - 9cos^2 x)^2 ]
= √(9 - 9cos^2 x)

= √[ 9( 1 - cos^2 x) ]
= √( 9 sin^2 x )
= +3sin x or -3sin x
參考: ME, ME, ME
2011-06-09 4:47 am
2(b) .........
= √(9 - 9cos^2 x)
=√(9 sin^2 x)
=3sin x


收錄日期: 2021-04-20 22:15:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110608000051KK00622

檢視 Wayback Machine 備份