數學知識交流---求值(2)

2011-06-08 8:49 pm
(1) 已知

√ [(x+y)^2 + (x-y)^2] = 5
√ [(x+2y)^2 + (2x+y)^2] = 10

求 x^2 + y^2

回答 (4)

2011-06-08 9:20 pm
✔ 最佳答案
(1) 解:
√ [(x+y)² + (x-y)²] = 5 ----------(1)
√ [(x+2y)² + (2x+y)²] = 10 ----(2)
由(1),得:
(x+y)² + (x-y)² = 25
x² + 2xy + y² + x² - 2xy + y² = 25
2x² + 2y² = 25
x² + y² = 12.5---------------------(3)
由(2),得:
(x+2y)² + (2x+y)² = 100
x² + 4xy + 4y² + 4x² + 4xy + y² = 100
5x² + 8xy + 5y² = 100 ----------(4)
把(3)代入(4),得:
5 (12.5) + 8xy = 100
xy = 75/16 ------------------------(5)
(3) + (5)×2,得:
(x+y)² = 175/8
x+y = ± (5√14)/4 ---------------(6)
(3) - (5)×2,得:
(x-y)² = 25/8
x-y = ± (5√2)/4 -----------------(7)
[((6) + (7))/2]² + [((6)-(7))/2]²,得:
x² + y² = 12.5

2011-06-08 13:22:28 補充:
題目給出兩條式,我們就不能只是計算第一條式。即是只計算第一條式就能算出答案,但是還要確保答案符合第二條式,假如不符合第二條式,那題目就無解了。
2011-06-14 5:59 am
同意001意見的說法,最簡單的例子:
a + b = 7
a + b = 8
求2a + 2b的值。
怎能只用第一條式來求呢?假如原方程組是無解,那怎樣求值呢?Crazy!
2011-06-08 9:21 pm
√ [(x+y)^2 + (x-y)^2] = 5√ [(x+y)(x+y)+(x-y)(x-y)]=5√ [(x^2+xy+xy+y^2)(x^2-xy-xy+y2)]=5√ (x^2+2xy+y^2+x^2-2xy+y2)=5√ (2x^2+2y^2)=52x^2+2y^2=25_______(1)√ [(x+2y)^2 + (2x+y)^2] = 10(x+2y)(x+2y)+(2x+y)(2x+y)=100x^2+2xy+2xy+4y^2+4x^2+2xy+2xy+y^2=1005x^2+8xy+5y^2=100__(2)SO, 5x^2+5y^2=100 -2x^2+2y^2=25 3x^2+3y^2=75 x^2+y^2=25
參考: MYSELF~
2011-06-08 9:11 pm
(x+y)²+(x-y)²=25
x²+2xy+y²+x²-2xy+y²=25
2x²+2y²=25
x²+y²=12.5


收錄日期: 2021-04-13 18:00:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110608000051KK00328

檢視 Wayback Machine 備份