✔ 最佳答案
(1) 解:
法1:設方程 p³ + ap² + bp + c = 0 的三根分別是x, y和z。
根據一元三次方程根與係數的關係,有:
x + y + z = -a, xy + yz + zx = b, xyz = -c
那麼x² + y² + z² = (x + y + z)² - 2(xy + yz + zx) = a² - 2b,
x³ + y³ + z³ = (x + y + z)³ - 3(x+y)(y+z)(z+x)
= (x+y+z)³ - 3(-a-x)(-a-y)(-a-z)
= (x+y+z)³ + 3a³ + 3(x+y+z)a² + 3(xy+yz+zx)a + 3xyz
= -a³ + 3a³ - 3a³ + 3ab - 3c
= 3ab - 3c - a³
由原方程組,得:
-a = 14 -------------------(1)
a² - 2b = 74 --------------(2)
3ab - 3c - a³ = 434 --------(3)
由(1),得:
a = -14 ------------------(4)
把(4)代入(2),得:
(-14)² - 2b = 74
b = 61 -------------------(5)
把(4)和(5)代入(3),得:
3(-14)(61) - 3c - (-14)³ = 434
c = -84
所以p³ - 14p² + 61p - 84 = 0
(p-7)(p-4)(p-3) = 0
p1 = 7, p2 = 4, p3 = 3
因為對稱式,所以
a1 = 7, b1 = 4, c1 = 3
a2 = 7, b2 = 3, c2 = 4
a3 = 4, b3 = 7, c3 = 3
a4 = 4, b4 = 3, c4 = 7
a5 = 3, b5 = 7, c5 = 4
a6 = 3, b6 = 4, c6 = 7
(2) 解:
2011-06-07 18:42:34 補充:
(1)
x1 = 7, y1 = 4, z1 = 3
x2 = 7, y2 = 3, z2 = 4
x3 = 4, y3 = 7, z3 = 3
x4 = 4, y4 = 3, z4 = 7
x5 = 3, y5 = 7, z5 = 4
x6 = 3, y6 = 4, z6 = 7
2011-06-07 19:03:01 補充:
(2) 解:
( x - 1 ) ( y - 1 ) ( z - 1 ) = 0 -----(1)
( x + y ) ( x + z ) ( y + z ) = 0 ---(2)
( x + 1 ) ( y - 1 ) z = 0 -------(3)
由(1),得:
x = 1 ----(a) 或
y = 1 ----(b) 或
z = 1 ----(c)
由(2),得:
x = -y ----(d) 或
x = -z ----(e) 或
y = -z ----(f)
由(3),得:
x = -1 -----(g) 或
y = 1 -----(h) 或
z = 0 ----(i)
2011-06-07 19:18:02 補充:
解方程組(a), (d), (g),無解
解方程組(a), (d), (h),無解
解方程組(a), (d), (i),得x=1, y=-1, z=0
解方程組(a), (e), (g),無解
解方程組(a), (e), (h),得x=1, y=1, z=-1
解方程組(a), (e), (i),無解
2011-06-07 19:31:15 補充:
解方程組(a), (f), (g),無解
解方程組(a), (f), (h),得x=1, y=1, z=-1
解方程組(a), (f), (i),得x=1, y=0, z=0
2011-06-07 19:39:21 補充:
(b), (d), (g),x=-1, y=1, z無限解
(b), (d), (h),x=-1, y=1, z無限解
(b), (d), (i),x=-1, y=1, z=0
(b), (e), (g),x=-1, y=1, z=1
(b), (e), (h),x無限解, y=1, z無限解
(b), (e), (i),x=0, y=1, z=0
2011-06-07 19:42:29 補充:
(b), (f), (g),x=-1, y=1, z=-1
(b), (f), (h),x無限解, y=1, z=-1
(b), (f), (i),無解
(c), (d), (g),x=-1, y=1, z=1
(c), (d), (h),x=-1, y=1, z=1
(c), (d), (i),無解
2011-06-07 19:52:51 補充:
(c), (e), (g),x=-1, y無限解, z=1
(c), (e), (h),x=-1, y=1, z=1
(c), (e), (i),無解
(c), (f), (g),x=-1, y=-1, z=1
(c), (f), (h),無解
(c), (f), (i),無解
2011-06-07 19:58:13 補充:
綜上,此題有無限解也。
第一題另解:
x + y + z = 14 --------(1)
x² + y² + z² = 74 --(2)
x^3 + y^3 + z^3 = 434--(3)
(1)² - (2) ,得:
xy + yz + zx = 61 --(4)
(2) x (1) - (3),得:
xy^2 + xz^2 + yz^2 + yx^2 + zx^2 + zy^2 = 602 --(5)
把x = 14 - y - z分別代入(4)和(5)中,得方程組(6)和(7),並解之,得解六組,但由於z>x>y,所以解只有一組:x = 4, y = 3, z = 7.
2011-06-07 19:58:32 補充:
請看意見。