circle problem

2011-06-04 11:42 pm
chord PA and chord PB cut chord DC at points Q and R respectively and arc DP=arc PC. Let angle PBD=a and DCA=b

a i)Express DQA in terms of a and b
ii)Prove that ABRQ is a cyclic quadrilateral
b) If DBC=70 ,PRQ=80,find BDC

http://i1113.photobucket.com/albums/k512/bornthiswayjudas/DSC00035.jpg

回答 (1)

2011-06-05 1:08 am
✔ 最佳答案
a i) ∠QAC = ∠PAC = a (Equal arc, equal ∠ at circum)

∠DQA = a + b (Ext. ∠ of triangle)

ii) Join AB, we have ∠DBA = b (∠s in the same segment)

So ∠RBA = a + b = ∠DQA

So ABRQ is a cyclic quad. (Converse of ext. ∠ of cyclic quad.)

b) With ∠PBC = a, we hae ∠DBC = 2a and hence a = 35

So ∠DBR = 35 and so ∠BDC = ∠PRQ - a = 45

2011-06-04 17:54:56 補充:
Consider triangle DBR

∠BDC + ∠DBR = ∠PRQ (Ext. ∠ of triangle)

∠BDC + a = ∠PRQ

∠BDC = ∠PRQ - a
參考: 原創答案


收錄日期: 2021-04-16 12:50:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110604000051KK00631

檢視 Wayback Machine 備份