兩題級數和求速解

2011-06-04 12:51 pm
1.設S=1/2+2/2^2+3/2^3+...+10/2^10,下列哪一個數和S最為接近?
(A)1.5(B)1.8(C)2.1(D)2.4(E)2.7

2.求(x+1)+2(x+1)^2+3(x+3)^3+...+10(x+1)^10之x^3項係數

3.求3^50之末3位數

回答 (3)

2011-06-04 5:37 pm
✔ 最佳答案
1.設S=1/2+2/2^2+3/2^3+...+10/2^10,下列哪一個數和S最為接近?
(A)1.5(B)1.8(C)2.1(D)2.4(E)2.7
Sol
S=1/2+2/2^2+3/2^3+4/2^4+...+10/2^10
S/2= 1/2^2+2/2^3+3/2^4+...+ 9/2^10+10/2^11
------------------------------------------------------------
S/2=1/2+1/2^2+1/2^3+_1/2^4+…+1/2^10-10/2^11
=1/2+1/2^2+1/2^3+_1/2^4+…+1/2^10+1/2^10-10/2^11-1/2^10
=1-10/2^11-1/2^10
S=2-10/2^10-1/2^9
選(C)

2. 求(x+1)+2(x+1)^2+3(x+3)^3+...+10(x+1)^10之x^3項係數
改為求(x+1)+2(x+1)^2+3(x+1)^3+...+10(x+1)^10之x^3項係數
Sol方法1
(x+1)+2(x+1)^2+3(x+1)^3+...+10(x+1)^10
=>3(x+1)^3+4(x+1)^4+5(x+1)^5+6(x+1)^6+7(x+1)^7+8(x+1)^8+9(x+1)^9+10(x+1)^10
=>3+ 4C (4,3)+ 5C (5,3)+ 6C (6,3)+ 7C (7,3)+ 8C (8,3)+ 9C (9,3)+ 10C (10,3)
=>3+4*4+5*10+6*20+7*35+8*56+9*84+10*120
=>2838

方法2
S=(x+1)+2(x+1)^2+3(x+1)^3+...+10(x+1)^10
S(1+x)= (x+1)^2+2(x+1)^3+...+ 9(x+1)^10+10(x+1)^11
-------------------------------------------------------------------------
-Sx=(x+1)+(x+1)^2+(x+1)^3+…+(x+1)^10-10(x+1)^11
先求 -Sx的x^4項係數
(x+1)^4+(x+1)^5+(x+1)^6+…+(x+1)^10-10(x+1)^11
=>
1+C(5,4)+C(6,4)+C(7,4)+C(8,4)+C(9,4)+C(10,4)-10*C(11,4)
=1+5+15+35+70+126+210-10*330
=-2838
x^3項係數=2838

3.求3^50之末3位數
Sol
3^50
=>9^25
=>81^12*9
=>6561^6*9
=>561^6*9
=>314721^3*9
=>721^3*9
=>519841*721*9
=>841*721*9
=>606361*9
=>361*9
=>3249
=>249


2011-06-04 6:38 pm
3.求3^50之末3位數
Sol
3^50
=(3^2)^25
=9^25
=(10-1)^25
=(10^25)C (25,0)+(10^24)[(-1)^1]C (25,1)+...+(10^2)[(-1)^23]C (25,23)+(10)[(-1)^24]C (25,24)+[(-1)^25]C (25,25)
=K+(10^2)[(-1)^23]C (25,23)+(10)[(-1)^24]C (25,24)+[(-1)^25]C (25,25)
=k+250-1
=k+249
末三位為249
2011-06-04 5:43 pm
基本上,這是3題

3^5+3不等於249


收錄日期: 2021-04-30 15:52:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110604000015KK01351

檢視 Wayback Machine 備份