✔ 最佳答案
(x² + y² + z²)² - (x + y + z)² = 1 - 1
==>
xy + yz + zx = 0於是x^4 + y^4 + z^4= (x² + y² + z²)² - 2(x² y² + y² z² + z² x²)
= 1 - 2(x² y² + y² z² + z² x²)
= 1 - 2[(xy + yz + zx)² - 2(xyz² + xzy² + yzx²)]
= 1 - 2[(xy + yz + zx)² - 2(x + y + z)xyz]
= 1 - 2 ( 0 - 2 xyz)
= 1 + 4xyz
= 1 + 2z [ (x + y)² - (x² + y²) ]
= 1 + 2z [ (1 - z)² - (1 - z²) ]
= 1 + 4z² (z -1)另一方面,由算幾不等式有x² + y² + x² + y² ≥ x² + y² + 2xy
2(x² + y²) ≥ (x + y)²
2(1 - z²) ≥ (1 - z)²
(1 - z)(2 + 2z - (1 - z)) ≥ 0
(z - 1)(3z + 1) ≤ 0
得
- 1/3 ≤ z ≤ 1f(x,y,z) = x^4 + y^4 + z^4 之極值即為f(z) = 1 + 4z² (z -1) 在 [- 1/3 , 1] 上之極值。f(z) = 4z³ - 4z² + 1f '(z) = 12z² - 8z設 f '(z) = 12z² - 8z = 0
==>
z = 0 或 z = 2/3當- 1/3 < z < 0 時 , f '(z) < 0
當 0 < z < 2/3 時 , f '(z) < 0
當 2/3 < z < 1 時 , f '(z) > 0又
f(- 1/3) = 11/27
f(0) = 1
f(2/3) = 11/27
f(1) = 1所以 f(x , y , z) = x^4 + y^4 + z^4 的最大值 = 1 , 最小值 = 11/27
2011-06-05 02:11:45 補充:
第一行應是 :
(x² + y² + z²) - (x + y + z)² = 1 - 1