Crazy Geometry (5)

2011-06-03 11:51 pm
ABCD is a square of side length 1. P is a point on AC and the circumcircle of ΔBPC cuts CD at Q. If the area of ΔCPQ is 6/25, find CQ.
ABCD是個邊長為1的正方形。P是AC上的一點,且ΔBPC的外接圓交CD於Q。若ΔCPQ的面積為6/25,求CQ。

回答 (3)

2011-06-04 4:29 pm
✔ 最佳答案
因ㄥBCQ為直角 , 故 BQ 為外接圓之直徑。BQ² = CQ² + BC²
即 CQ² = BQ² - 1
在 △BCP 中 , 由正弦定理 :
BP / sinㄥBCP = BQ
BP / sin45° = BQ
BP√2 = BQ 把此代入上式得 :CQ² = 2BP² - 1 ......................(1)
在 △ABP 中 , 由餘弦定理 :
BP² = AP² + AB² - 2AP AB cosㄥBAP
BP² = AP² + 1 - 2AP cos 45°
BP² = AP² - √2AP + 1 ............(2) 又
(1/2) CP CQ sinㄥPCQ = △CPQ
(1/2) (AC - AP) CQ sin 45° = 6/25
(1/2) (√2 - AP) CQ √2/2 = 6/25
(√2 - AP) CQ = 12√2 / 25
(√2 - AP) = 12√2 / (25CQ)
AP = √2 - 12√2 / (25CQ) .......(3)
圖片參考:http://imgcld.yimg.com/8/n/HA04628698/o/101106030408313869583810.jpg
(2) 代入 (1) :
CQ² = 2(AP² - √2AP + 1) - 1
CQ² = 2AP² - 2√2AP + 1把 (3) 代入上式 :
CQ² = 2[√2 - 12√2 / (25CQ)]² - 2√2 [√2 - 12√2 / (25CQ)] + 1
CQ² = 2[2 + 288 / (625CQ²) - 48 / (25CQ)] - 4 + 48 / (25CQ) + 1
CQ² = 576 / (625CQ²) - 48 / (25CQ) + 1
CQ² = (24 / (25CQ))² - 2 (24 / (25CQ)) + 1
CQ² = (24 / (25CQ) - 1)²
(CQ - 24/(25CQ) + 1) (CQ + 24/(25CQ) - 1) = 0
CQ - 24/(25CQ) + 1 = 0 或 CQ + 24/(25CQ) - 1 = 0
25 CQ² + 25 CQ - 24 = 0 或 25 CQ² - 25CQ + 24 = 0
(5CQ - 3) (5CQ + 8) = 0 或 無實根( △ = 25² - 4*25*24 < 0 )CQ = 3/5 或 CQ = - 8/5 (捨)
2011-06-04 2:09 am
可以有步驟嗎??????

2011-06-03 22:30:29 補充:
這是某大型比賽中的一條數
是不能用計算機的


收錄日期: 2021-04-13 18:00:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110603000010KK04083

檢視 Wayback Machine 備份