✔ 最佳答案
f(x,y) = (x^2+y)^{1/5}
a=5, b=7 則 f(a,b) = (5^2+7)^{1/5} = 2.
df(x,y) = f_x(a,b) dx + f_y(a,b) dy
f_x(x,y) = (2/5)x(x^2+y)^{-4/5}, 故 f_x(a,b) = (2/5)(5)(1/16) = 1/8
f_y(x,y) = (1/5)(x^2+y)^{-4/5}, 故 f_y(a,b) = (1/5)(1/16) = 1/80
dx = -0.05, dy = 0.02
f(x,y) ≒ f(a,b) + df(x,y)
故
f(4.95,7.02) ≒ f(5,7) + f_x(5.7) dx + f_y(5,7) dy
= 2 +(1/8)(-0.05) + (1/80)(0.02)
= 2 - 0.00625 + 0.00025 = 1.94
(4.95^2+7.02)^{1/5} ≒ 1.94
2011-06-02 02:13:21 補充:
f(4.95,7.02) ≒ 2 - 0.00625 + 0.00025 = 1.994
(4.95^2+7.02)^{1/5} ≒ 1.994