✔ 最佳答案
因為x,y 係實數, 所以會 x > y or x < y...(至於x=y之後再講...)
因為
(x + y) / (1+x+y) 及 x / (1+x) + y / (1+y) 係對稱,所以...
WLOG, SAY y > x
=> 1+y > 1+x
=>(1+y) + (x+y)(1+y) > 1+y > 1+x (since x,y>0)
=>(1+x+y)(1+y) > 1+x
Since x,y>0
1/(1+x) > 1/[(1+x+y)(1+y)]
(-x) / (1+x) < (-x) / [(1+x+y)(1+y)]
[1-(1+x)] / (1+x) < [(1+y)-(1+x+y)] / [(1+x+y)(1+y)]
1 / (1+x) -1 < 1 / (1+x+y) - 1 / (1+y)
1 / (1+x) + 1 / (1+y) -1 < 1 / (1+x+y)
-[1 / (1+x) + 1 / (1+y) -1] > -[1 / (1+x+y)]
1-[1 / (1+x)+1 / (1+y) -1] > 1-[1 / (1+x+y)]
[1-1 / (1+x)]+[1-1 / (1+y)] > 1- 1 / (x+y+1)
x / (1+x) + y / (1+y) > (x+y) / (x+y+1)
所以當x,y>0的時候(x不等於y),(x + y) / (1+x+y) 小過 x / (1+x) + y / (1+y)
好la~...when x=y,
(x + y) / (1+x+y) =(2x) / (2x+1)
x/(1+x)+y/(1+y) = (2x)/(1+x)
Since x>0,
x > 0
2x > x
1+2x > x+1
1 / (1+2x) < 1/ (x+1)
(2x) / (1+2x) < (2x) / (1+x)
=>(x + y) / (1+x+y) < x/(1+x)+y/(1+y)
As a result, 只要x,y>0, (x + y) / (1+x+y) 小過 x / (1+x) + y / (1+y)
但x,y兩個都等於0, (x + y) / (1+x+y) = x / (1+x) + y / (1+y)
x,y是但一個等於0,結果一樣...(x + y) / (1+x+y) = x / (1+x) + y / (1+y)