trigonometry

2011-05-28 11:09 pm
If A+B+C=180°,prove that cos3A+cos3B+cos3C=1-4sin(3A/2)sin(3B/2)sin(3C/2)

回答 (1)

2011-05-28 11:37 pm
✔ 最佳答案
RHS=1-4sin(3A/2)sin(3B/2)sin(3C/2)
=1+2[cos(3A+3B)/2-cos(3A-3B)/2]sin(3C/2)
=1+2[cos(3A+3B)/2-cos(3A-3B)/2]sin[270°-(3A+3B)/2]
=1-2[cos(3A+3B)/2-cos(3A-3B)/2]cos(3A+3B)/2
=1-2cos[(3A+3B)/2]cos[(3A+3B)/2]+2cos[(3A-3B)/2][cos(3A+3B)/2]
=1-cos(3A+3B)-cos0°+cos3A+cos3B
=cos3A+cos3B-cos(540°-3C)
=cos3A+cos3B+cos3C
=LHS


收錄日期: 2021-04-20 00:45:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110528000051KK00655

檢視 Wayback Machine 備份