maths f4

2011-05-28 8:02 pm
z varies as the square of x and inversely as y ,where x ,y and z are positive.when x=8 and y=4 ,z=2

a)express z in terms of x and y

b)suppose x-2y-z=0,
i)find x:y:z
ii)find the increase of z if x is increased by 2.

點解AND 點做?

回答 (1)

2011-05-28 9:05 pm
✔ 最佳答案
a) z=kx^2/y where k is a constant

2=k(8^2)/4
16k=2
k=1/8

Therefore z=x^2/(8y)


b)
i) x-2y-z=0
From a): z=x^2/(8y)
x-2y-x^2/(8y)=0
8xy-16y^2-x^2=0
x^2-8xy+16y^2=0
(x-4y)^2=0
x-4y=0
x=4y

Hence, z=x^2/(8y)=(4y)^2/(8y)=2y

Therefore x:y:z=4y:y:2y=4:1:2


ii) x:z=4:2=2:1
i.e. x/z=2
(2x)/(2z)=2
Therefore the increase of z is 2, if x is increased by 2.


2011-05-28 13:30:30 補充:
b)
ii) x:z=4:2=2:1
i.e. x/z=2

Suppose when x is increased by 2, x becomes X and z becomes Z.
Then X=x+2 and X/Z=2

X/Z=2
(x+2)/Z=2
Z=(x+2)/2=x/2+1=z+1

Therefore the increase of z is 1, if x is increased by 2.

2011-05-28 13:35:13 補充:
z隨x的平方而正變和隨y而反變,其中x,y和z為正數。當x=8和y=4時,z=2。
a) 以x和y表示z。
b) 假設x-2y-z=0,
i) 求 x:y:z
ii) 若x增加2,求z的增加。


收錄日期: 2021-04-23 20:48:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110528000051KK00415

檢視 Wayback Machine 備份