微積分『斜率』

2011-05-28 7:40 pm
求曲線r=aθ ,在θ=π/2 的斜率?

請問如何下手?

回答 (4)

2011-05-28 8:43 pm
✔ 最佳答案
dy/dx

= [(dr/dθ)sinθ + rcosθ]/[(dr/dθ)cosθ - rsinθ]

= [asinθ + aθcosθ]/[acosθ - aθsinθ]

= [sinθ + θcosθ]/[cosθ - θsinθ]

= (1 + 0)/(0 - π/2)

= -2/π




2011-05-28 23:17:25 補充:
Thank you for linch
2011-06-12 11:15 pm
提示y=rsinθ, x=rcosθ
2011-05-29 5:20 am
r = f(θ)

dy/dx
= (dy/dθ) / (dx/dθ)
= [d/dθ (r sinθ)] / [d/dθ (r cosθ)]
= [ (dr/dθ) * sin θ + r cosθ] / [ (dr/dθ) * cosθ - r sinθ ]
2011-05-28 9:33 pm
請問myisland大:

[(dr/dθ)sinθ + rcosθ]/[(dr/dθ)cosθ - rsinθ]

這行我實在不懂

麻煩講解一下

謝謝


收錄日期: 2021-04-26 14:07:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110528000015KK02980

檢視 Wayback Machine 備份