用 Roll's theorem 還是 MVT ?

2011-05-22 7:02 am
How to show that there exists a, b ∈ [0,1] such that g(a)=g(b) and b-a=1/2, if g is continuous and nonnegative on [0,1] with g(0)=g(1)=0?

回答 (4)

2011-05-23 10:58 am
✔ 最佳答案
設F(x)=g(x+0.5)-g(x), 則
(1) F(x)為 [0, 0.5]內的連續函數
(2) F(0.5)*F(0)= [g(1)-g(0.5)]*[ g(0.5)-g(0] = - [g(0.5)]^2 <= 0
若g(0.5)=0, 則a=0, b=0.5即為題目所要求
若g(0.5)不為0, 則F(0.5)*F(0) < 0, 由IVT知: 存在 k 介於(0, 0.5)之間
使得F(k)=0, 即 g(k+0.5)=g(k), a=k, b=k+0.5即為題目所求

本題不必用g(x)為nonnegative on [0,1] 的條件
2011-05-22 10:00 am


圖片參考:http://imgcld.yimg.com/8/n/AC06918685/o/151105211041113872187150.jpg
We canassume that g(1/2)>0, since if g(1/2)=0, take a=0,b=1/2, such thatg(0)=g(1/2)=0, the problem is done.Let h(x) = g(x+1/2)if 0<=x<=1/2, = g(x-1/2) if 1/2<=1.< span=""><=1.<>Then h(x)is continuous on [0,1]Let k(x) =h(x) - g(x). Then k(x) is also continuous on [0,1].
Consider :k(0)=h(0)-g(0)=g(1/2)-0=g(1/2)>0.k(1/2)=h(1/2)-g(1/2)=g(1)-g(1/2)=0-g(1/2)<0.Sincek(0)>0 and k(1/2) <0, by MVT, there exist a t, 0< t < 1/2, suchthat k(t)=0, i.e. k(t)=h(t)-g(t)=g(t+1/2)-g(t)=0,or g(t+1/2)=g(t).Hence a=t and b=t+1/2, such that g(a)=g(b).Done.

2011-05-22 14:34:53 補充:
想法說明:
既然要找距離1/2之點是否有相同的值,
就考慮所有g(x+1/2)-g(x) 之值,看看有沒有=0之點。
而g(x+1/2) 只不過是g(x)往左平移1/2。
因為有首尾值相等(g(0)=g(1)=0) 之條件,所以不失連續性。
剩下的部分,就是一般勘根定理的典型用法了。

2011-05-24 00:15:39 補充:
林 春生 ( 初學者 5 級)說的對,無須nonnegtive 的條件,
而且也無須g(0)=g(1)=0, 只要 g(0)=g(1)就夠了。

我竟然沒有發現
k(1/2)=g(1)-g(1/2)
=g(0)-g(1/2)
=-[g(1/2)-g(0)]=
-k(0).
由此可看出,與nonnegtive 的條件無關,
也與g(0)=g(1)的值無關。
2011-05-22 8:36 am
應該可以用mvt 証明吧
找出 與 必定有一點斜率是零 矛盾的事就行了吧

2011-05-22 12:11:43 補充:
喔~~~ 謝謝指教
2011-05-22 7:16 am
用Intermediate Value Theorem!

2011-05-22 11:40:23 補充:
題目的函數並沒有可微分的條件,哪來MVT可用呢?


收錄日期: 2021-05-04 01:00:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110521000015KK10411

檢視 Wayback Machine 備份