圖片參考:
http://imgcld.yimg.com/8/n/AC06918685/o/151105211041113872187150.jpg
We canassume that g(1/2)>0, since if g(1/2)=0, take a=0,b=1/2, such thatg(0)=g(1/2)=0, the problem is done.Let h(x) = g(x+1/2)if 0<=x<=1/2, = g(x-1/2) if 1/2<=1.< span=""><=1.<>Then h(x)is continuous on [0,1]Let k(x) =h(x) - g(x). Then k(x) is also continuous on [0,1].
Consider :k(0)=h(0)-g(0)=g(1/2)-0=g(1/2)>0.k(1/2)=h(1/2)-g(1/2)=g(1)-g(1/2)=0-g(1/2)<0.Sincek(0)>0 and k(1/2) <0, by MVT, there exist a t, 0< t < 1/2, suchthat k(t)=0, i.e. k(t)=h(t)-g(t)=g(t+1/2)-g(t)=0,or g(t+1/2)=g(t).Hence a=t and b=t+1/2, such that g(a)=g(b).Done.
2011-05-22 14:34:53 補充:
想法說明:
既然要找距離1/2之點是否有相同的值,
就考慮所有g(x+1/2)-g(x) 之值,看看有沒有=0之點。
而g(x+1/2) 只不過是g(x)往左平移1/2。
因為有首尾值相等(g(0)=g(1)=0) 之條件,所以不失連續性。
剩下的部分,就是一般勘根定理的典型用法了。
2011-05-24 00:15:39 補充:
林 春生 ( 初學者 5 級)說的對,無須nonnegtive 的條件,
而且也無須g(0)=g(1)=0, 只要 g(0)=g(1)就夠了。
我竟然沒有發現
k(1/2)=g(1)-g(1/2)
=g(0)-g(1/2)
=-[g(1/2)-g(0)]=
-k(0).
由此可看出,與nonnegtive 的條件無關,
也與g(0)=g(1)的值無關。