✔ 最佳答案
設f(x)=∑(n=1~∞) x^(3n-1)/(3n-1), -1 <= x < 1
f (0)=0
f'(x)=∑(n=1~∞) x^(3n-2), 為等比級數, r=x^3, 首項x
f'(x)=x/(1-x^3)
積分得f(x)=∫[0~x] t/(1-t^3) dt
=(1/3)∫[0~x] [ 1/(1-t) + (t-1)/(t^2+t+1)] dt
=(1/3)∫[0~x]{1/(1-t)+(1/2) (2t+1)/(t^2+t+1)-1.5/[(t+ 1/2)^2+ 3/4]}dt
=(1/3){-ln|1-x|+(1/2)ln(x^2+x+1)-√3 arctan[(2x+1)/√3] +π/(2√3)}
所求級數=f(-1)=-(1/3)ln2 +π/(3√3)