F3 Maths

2011-05-16 6:29 pm
1) If the distance between (2,6) and (3,k) is Ö5, where K > 4 , then k = ?

2) A (5, -8), B(0, b) and C (5,5) are three points in a rectangular coordinate plane, where b < 0. if AB=AC find the value of b


回答 (2)

2011-05-16 7:33 pm
✔ 最佳答案
Distance between two points A(x1,y1) and B(x2,y2) is:
AB=√[(x2-x1)^2+(y2-y1)^2]

1)
√[(3-2)^2+(k-6)^2]=√5
(3-2)^2+(k-6)^2=5
1+(k-6)^2=5
(k-6)^2=4
k-6=2 or k-6=-2
k=8 or k=4 (rejected, k>4)
Therefore k=8

2)
AB=√[(0-5)^2+(b+8)^2]=√(25+b^2+16b+64)=√(b^2+16b+89)
AC=√[(5-5)^2+(5+8)^2]=√(13^2)=13
AB=AC
√(b^2+16b+89)=13
b^2+16b+89=169
b^2+16b-80=0
(b+20)(b-4)=0
b+20=0 or b-4=0
b=-20 or b=4 (rejected, b<0)
Therefore b=-20

2011-05-16 19:15:22 補充:
各位不必作出無謂的爭執,兩條題目都是有關兩點的距離,問題比較直接,所以應該沒有太多新意。

第1題的第3步,我特意保留 (k-6)^2,然後得出 (k-6)^2=4,再開方找答案。
其實也可以有小許變化如下:
1+(k-6)^2=5
1+k^2-12k+36=5
k^2-12k+32=0
(k-8)(k-4)=0
k=8 or k=4 (rejected, k>4)

第2題的第1步,我特意不保留 (b+8)^2 而把它變成 b^2+16b+64。若是保留 (b+8)^2,則會跟 002 一樣了。
2011-05-16 7:35 pm
1)
(k - 6)^2 + (3 - 2)^2 = (V5)^2
(k - 6)^2 + 1 = 5
(k - 6)^2 = 4 k - 6 = 2 or k - 6 = -2
k = 8 k = 4 (reject, k>4)2)
AB=AC
V[ (b + 8)^2 + (5 - 0)^2 ] = V[ (5 + 8)^2 + (5 - 5)^2 ]
(b + 8)^2 + 25 = 169
(b + 8)^2 = 144 b + 8 = 12 or b + 8 = -12
b = 4 (reject, b<0) b = -20

2011-05-16 17:29:42 補充:
RE Au:

這次有點冤了

那是我上載回答時, 被人捷足先登。


收錄日期: 2021-04-13 17:59:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110516000051KK00248

檢視 Wayback Machine 備份