vector calculus

2011-05-16 11:17 am
let F = ( exp(y+z)-2y^2 , x*exp(y+z) + y , exp(y+z) )


for the surface S:={(x,y,z) : z=exp - (x^2+4y^2), x^2+4y^2<=4}

find a parametrization for S so that the normal is pointing upward in the direction of the positive z-axis

find double integral of (curl of F) . dS when the normal os S is as above


my parametrization found (is it correct?)
x= 2 p cos t
y = p sin t
z = exp(-4p^2)

0<=p<=1 0<=t<= 2 Pi

回答 (1)

2011-05-17 7:19 am
✔ 最佳答案
x= 2 p cos t
y = p sin t
z = exp(-4p^2)
0<=p<=1, 0<=t<= 2π
is correct.

∫∫_S curl(F)∙dS = ∫_C F∙ds (By Stokes thm.)
where C is the curve x^2+4y^2=4 counterclockwise, thus
(x,y,z)=(2cost, sint, 0), 0<= t <= 2π

∫_C F∙ds=∫[0~2π] {2cost*[e^(sint)-2(sint)^2]+sint[2cost e^(sint)+ sint]} dt
= 2e^(sint) - (4/3)(sint)^3+2(sint-1)e^(sint)+(1/2)[t - 0.5sin(2t)] sub. t=0~2π
= π


收錄日期: 2021-05-04 00:59:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110516000016KK01001

檢視 Wayback Machine 備份