lines and planes in 3d

2011-05-16 8:01 am
consider two planes
P1 : 3x-2y+4z=1
p2 2x-2y+z=3

and a line
L x=3+2t, y=1-5t, z=-2+6t


show that for any real number k, the plane
(2x-2y+4z-1)+k(2x-2y+z-3)=0 contains the line of intersection of P1 and P2
find an eqt of the plane containing the line of intersection of P1 and P2, and // L

find the shortest distance b/w L and the line of intersection of P1 and P2
更新1:

P1 : 3x-2y+4z=1 no typo

更新2:

may u explain a bit more on how do you find the distance between a line and a plane which is parallel to it?

更新3:

what is the method in general?

回答 (2)

2011-05-16 8:39 am
✔ 最佳答案
1. If A(x,y,z) belongs to P1 and P2, then
3x-2y+4z-1=0 and 2x-2y+z-3=0,
so, (3x-2y+4z-1)+k(2x-2y+z-3)=0+k*0=0
ie. A(x,y,z) satisfies (3x-2y+4z-1)+k(2x-2y+z-3)=0 for any k.
2. Let plane E: (3x-2y+4z-1)+k(2x-2y+z-3)=0 parallel L, then
the normal vector of E (3+2k, -2-2k, 4+k) is perpendicular to the
direction vector (2, -5, 6) of L, thus, 2(3+2k)-5(-2-2k)+6(4+k)=0, k=-2.
Hence, E : -x+2y+2z+5=0
3. The sortest distance = d(E, L) = | -3+2-4+5|/3=0.

2011-05-16 01:43:09 補充:
3. The shortest distance = d(E, L)= d(E, A(3, 1, -2))= | -3 + 2 -4 + 5 |/3=0.
題目: P1是 3x-2y+4z=1 or 2x-2y+4z=1?

2011-05-16 02:17:37 補充:
(2x-2y+4z-1)+k(2x-2y+z-3)=0 ????

2011-05-16 02:20:12 補充:
(2x-2y+4z-1)+k(2x-2y+z-3)=0 ????

2011-05-16 18:17:23 補充:
Because L//E, so the distance b/w E and L equals the distance b/w any point A of L and the plan E.
Taking A(3,1,-2), thus the distance d(L, E)= d(A, E)= | -3+2 -4 +5| /√(1+4+4)= 0.

In general, if E contains L2 and E parrelle to L1, then d(L1, L2)=d(E, L1)=d(E, A),
where A is any point of L1.
2011-05-16 9:18 am
To : 煩惱即是菩提 ( 知識長)
第三題你是不是看錯題目?


收錄日期: 2021-05-04 01:00:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110516000010KK00009

檢視 Wayback Machine 備份