a-maths~

2011-05-15 8:02 am
a=ksinA,b=ksinB,c=ksinC,其中∠A+∠B+∠C=180°且k>0。利用複角公式証明a^2=b^2+c^2-2bc cosA

回答 (1)

2011-05-15 8:19 am
✔ 最佳答案
a/sinA = b/sinB = c/sinC = ka = ksinA,b = ksinB,c = ksinC

a^2 = b^2 + c^2 - 2bc cosA <=> (b^2 + c^2 - a^2)/2bc = cosA LHS= (b²+c²-a²)/2bc= [(ksinB)^2+(ksinC)^2-(ksinA)^2]/2(ksinB)(ksinC)=[(sinB)^2+(sinC)^2-(sinA)^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-sin(180-(B+C))^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-sin(B+C)^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-(sinBcosC+cosBsinC)^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-(sinBcosC)^2-(cosBsinC)^2-2sinBsinCcosBcosC]/2(sinB)(sinC)= [2(sinB)^2(sinC)^2 - 2sinBsinCcosBcosC]/2(sinB)(sinC)= sinBsinC - cosBcosC

= -cos(B + C)= cos(180 - (B + C))= cosA= RHS

Hope it helps !!!


收錄日期: 2021-04-23 19:46:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110515000051KK00002

檢視 Wayback Machine 備份